Sweep-Shake: Finding Digital Resources in Physical Environments

Simon Robinson
Parisa Eslambolchilar
Matt Jones

Future Interaction Technology Lab
Swansea University, UK
Overview

• Motivation
• Background → Our approach
• Sweep-Shake system
• Exploratory trial → User study
• Results
• Conclusions
Motivation

- Finding geo-tagged information about the places around you
- Engaging with surroundings: Often need to divide attention
- No reliance on screen for initial discovery
 - Lightweight, casual interaction
 - Filtering of information
Background

- Spatial Information Appliances (Egenhofer [4])
- Point to Discover (Fröhlich et al. [5], Simon et al. [15])
- Bearing-based selection (Strachan, Murray-Smith [16])
- Vibrotactile waist belt (Van Erp et al. [18])
- Earcons (Brewster et al. [2])
- AudioGPS (Holland et al. [7])
Our approach: Sweep-Shake

- Haptic feedback for direction
- Gestures to refine selection
- Heads-up
Mode 1: Discovering places (browsing)

- Sweep the device to scan the area
- Feedback felt when pointing at a target
 - Direction
 - Size
- Press button to explore further
Mode 2: Filtering information

- Simple gestures
- 4 categories
- Small pointing movements to filter
- Once found, press to view (on UMPC)
Proposed benefits

• Seeking of real-world digital resources without looking at a screen

• Encourage interaction with the surroundings rather than the device
Initial exploratory trial

- 4 participants, explore campus at will
 - Verbal feedback
 - Observed behaviours
- Positive feedback
 - Enjoyed interaction method
 - Some used as background cue: Heads-up
 - Less interested in audio/video content
 - Save for later?
User study

• Focus on discovery and selection process: simulated targets
 • Scan device to discover
 • Press button to select
 • Search for filtered information types
 • Find and select each one
 • Repeat

• Compare to visual system...
Prototype 2: Visual

- Visual analog of haptic
- Rotating aerial view
- Same method for scanning
- Touch for filtering
- Heads down
User study: Method

• 32 participants
• 6 targets
• Fixed participant location

• Between groups, gather:
 • Success rate; time taken; false positives
 • Observed behaviours; verbal feedback
Results: Discovering targets

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Sweep-Shake</th>
<th>Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targets found (of 6)</td>
<td>75%</td>
<td>97%</td>
</tr>
<tr>
<td>Time to select (secs, per target)</td>
<td>16.5 (sd: 22.3)</td>
<td>8.8 (sd: 5.6)</td>
</tr>
<tr>
<td>Overall time (secs)</td>
<td>105.2 (sd: 32.3)</td>
<td>81.7 (sd: 26.4)</td>
</tr>
<tr>
<td>False positives (per target)</td>
<td>0.9 (sd: 1.1)</td>
<td>0.9 (sd: 0.6)</td>
</tr>
</tbody>
</table>
Results: Discovering targets

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Sweep-Shake</th>
<th>Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targets found</td>
<td>(of 6)</td>
<td>75%</td>
</tr>
<tr>
<td>Time to select (secs, per target)</td>
<td>16.5 (sd: 22.3)</td>
<td>8.8 (sd: 5.6)</td>
</tr>
<tr>
<td>Overall time (secs)</td>
<td>105.2 (sd: 32.3)</td>
<td>81.7 (sd: 26.4)</td>
</tr>
<tr>
<td>False positives (per target)</td>
<td>0.9 (sd: 1.1)</td>
<td>0.9 (sd: 0.6)</td>
</tr>
</tbody>
</table>

Time taken:

![Time taken graph showing comparison between Haptic and Visual systems for different targets.](image-url)
Results: Discovering targets

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Sweep-Shake</th>
<th>Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targets found (of 6)</td>
<td>75%</td>
<td>97%</td>
</tr>
<tr>
<td>Time to select (secs, per target)</td>
<td>16.5 (sd: 22.3)</td>
<td>8.8 (sd: 5.6)</td>
</tr>
<tr>
<td>Overall time (secs)</td>
<td>105.2 (sd: 32.3)</td>
<td>81.7 (sd: 26.4)</td>
</tr>
<tr>
<td>False positives (per target)</td>
<td>0.9 (sd: 1.1)</td>
<td>0.9 (sd: 0.6)</td>
</tr>
</tbody>
</table>
Verbal feedback

- Liked haptics
 - ‘fun’, ‘easy’
- Saw value in heads-up interaction
 - ‘More helpful than my GPS’
 - ‘Guide me’ mode requested
- But: can be hard to interpret
 - Feedback and mode clarification needed
Conclusions

• Haptic feedback can offer heads-up interaction

• Users appreciated haptic feedback

• Issues with usability
 • Work needed on modes
Conclusions

- Haptic not yet on-par with visual
 - Lack of familiarity
 - Getting closer...

- Visual has its own issues
 - False positives similar to haptic
Ongoing work

• Haptic feedback in other situations
 • Find objects instead of place information
 • Navigation instead of sat-nav
 • Multi-level hierarchy
• Completely on-phone
 • Low-cost applications - no specific hardware
• Projector for visual content
Thank you

• Questions?

• cssimonr@swan.ac.uk

• http://cs.swan.ac.uk/negotiatedinteraction

• Research funded by EPSRC project EP/E042171/1, undertaken in collaboration with colleagues at Glasgow University
Sweep-Shake: Finding Digital Resources in Physical Environments

Simon Robinson
Parisa Eslambolchilar
Matt Jones

Future Interaction Technology Lab
Swansea University, UK