
Verification of Railway Interlockings

in SCADE
Andrew Lawrence

February 18, 2011

A thesis submitted to Swansea University
in candidature for the degree of Master of Research

Department of Computer Science
Swansea University





Declaration

This work has not previously been accepted in substance for any degree and is not being
currently submitted for any degree.

February 18, 2011

Signed:

Statement 1

This thesis is being submitted in partial fulfilment of the requirements for the degree of a
MRes in Logic and Computation.

February 18, 2011

Signed:

Statement 2

This thesis is the result of my own independent work/investigation, except where otherwise
stated. Other sources are specifically acknowledged by clear cross referencing to author, work,
and pages using the bibliography/references. I understand that failure to do this amounts
to plagiarism and will be considered grounds for failure of this dissertation and the degree
examination as a whole.

February 18, 2011

Signed:

Statement 3

I hereby give consent for my thesis to be available for photocopying and for inter-library loan,
and for the title and summary to be made available to outside organisations.

February 18, 2011

Signed:





Contents

1 Introduction 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 A History of Railway Signalling and Control Systems . . . . . . . . . . . . . 9
2.2 Invensys Rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 An Overview of the Railway Domain . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Ladder Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Previous Work in this Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Model Checking 17
3.1 Applying Model Checking Techniques to Safety Critical Systems . . . . . . . 17
3.2 St̊almarck’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Underlying Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Binary Decision Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Verification of Ladder Logic Programs in SCADE 43
4.1 Pelican Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Modelling Ladder Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Verification of Ladder Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Alternative Modelling Approaches . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Verification of two Real World Interlockings . . . . . . . . . . . . . . . . . . . 55
4.6 A Comparison of Different Model Checkers . . . . . . . . . . . . . . . . . . . 58

5 Concrete Modelling of the Railway Domain 63
5.1 Modelling Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Railway Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Comparison with the First Approach . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusion 77
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Proof Systems 85

5



6 CONTENTS

A.1 Gentzen’s Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 Smullyan’s Semantic Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.3 Propagation Rules for St̊almarck’s Tautology Checker . . . . . . . . . . . . . 87

B Concrete Railway Model 91
B.1 Railway Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.2 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.3 Route Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.4 Railway Segment Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.5 Modular Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



Chapter 1

Introduction

1.1 Introduction

This thesis is concerned with the use of SCADE Suite (Esterel Technologies) for the verification
of railway interlockings. This is a feasibility study done in co-operation with Invensys Rail, a
leading international company for the design, construction, and validation of railway control
systems.

1.2 Aim

In this thesis we will be exploring the verification of railway interlockings with a view to
practical application in industry and investigating the use of a commercial piece of software
SCADE suite from Esterel Technologies. We intend to answer the question: How well does
SCADE suite perform the verification of code and what ways is it applicable to the verification
of railway interlockings? We explore the application of model checking where we specifically
concentrate on two different modelling approaches.

In the first approach we translate existing specifications of railway interlockings written in so-
called Ladder Logic into SCADE and verify them. To do this a new formalism is introduced to
capture the semantics of ladder logic using labelled transition systems. We first use SCADE

to verify a small toy ladder logic program. In our first attempt the translation was done
manually. To scale up this approach a tool was created to automatically translate ladder logic
into SCADE language. Our work on formalizing ladder logic builds on two previous MRes
projects by Kanso [Kan08] and James [Jam10]. The problem of verifying ladder logic was
first approached by Kanso [Kan08] who was the first to systematically describe ladder logic
and who developed a prototype translation and verification tool. James [Jam10] expanded
the functionality of the prototype tool by adding model checking techniques which could be
applied to the verification problem. We have applied SCADE to the example case studies
considered in these two previously completed MRes Projects. These include two real world
railway control systems of considerable size and complexity.

The second approach presented in this project was driven by the desire of industry to change

7



8 Chapter 1 Introduction

the way they model their systems. There is a drive away from low level languages towards
more powerful high level languages. In a bid to drive down costs the concept of reuse is
important. Industry would like to have a toolkit of components and pre-verified modules
from which they can model new railways. This led to the development of a new modelling
approach which embodies these points. An example railway was modelled to provide a case
study into its use. Verification was then performed on our railway example, on individual
components and on modules of components.

1.3 Thesis Outline

In Chapter 2 we will introduce a large amount of background information regarding the
railway, its history and composition. We will give an introduction to ladder logic and describe
the operation of the Westrace Railway Interlocking.

In Chapter 3 we will discuss the theoretical background under-pinning the SCADE suite. We
will explore St̊amarck’s Saturation method giving both an informal explanation using several
examples and a formal explanation providing the theoretical background and implementation
details. This is followed by a survey of another technique used to decide the satisfiability of
propositional formulae namely binary decision diagrams. We provide a formal introduction
to binary decision diagrams as well as a previously known result regarding their complexity.

In Chapter 4 we will explore the verification of ladder logic programs. We begin by introducing
a toy example ladder logic program for a pelican crossing. Throughout this chapter we present
several possible formalisations of this in the SCADE language. A new method is presented
which captures the semantics of ladder logic programs using labelled transition systems. We
then present an approach for the verification of ladder logic programs using the SCADE suite.
This includes a automatic translation of ladder logic programs into the SCADE language. We
follow this with a discussion of invariants and their addition to SCADE models. Finally we
perform a comparison between SCADE , the tool produced by James [Jam10] and the KIND
safety property verifier.

In Chapter 5 we will introduce a new modelling approach to capture railway domain in a
concrete and modular fashion. This begins with a discussion of components modelled, some
motivation for the modelling and a description of their behaviour. Following this discussion an
example is presented of an abstract railway modelled using the aforementioned components.
We then have a discussion of the verification of our new modelling approach. This includes the
verification of topological properties and modules of components. We conclude this chapter
with a comparison between the first approach and this new modelling approach.

Finally in Chapter 6 we provide a conclusion to this thesis. We provide a summary of the
work performed and the results achieved. Then we conclude by discussing possible directions
for future work.

The Appendix is split into two sections. The first contains rules for several proof systems
including St̊almarck’s saturation method. The second contains the SCADE language code for
the concrete modelling approach.



Chapter 2

Background

From their birth in the 1800s to the present day, the railway and its control systems have
seen many advances. Its control and safety has gone from being a completely manual human
based system, to a mechanical system and finally to the electronic system we see today.
We will now look at a brief history of the railway followed by information on our industrial
partner Invensys Rail. We then look more closely at modern railways and the equipment
which constitutes them. We also study Westrace interlocking which is produced by Invensys
and the ladder logic programs which run on it. Finally, we look at some previous work in this
field.

2.1 A History of Railway Signalling and Control Systems

Prior to the days of fixed signals, Policemen would be stationed at junctions and railway
stations. They changed points manually and gave instructions to train drivers by using a
system of either flags or oil lamps depending on the visibility. Since this was before the time
of telecommunications and electricity there was no way of telling where a train was once it
left a station and went out of sight. The only safety precaution that could be taken was to
use an egg timer to delay the departure of the next train in order to give the previous train
time to progress along the track. Train speeds were not very high during this period so this
was an acceptable way of ensuring safety.

Modern railway signally makes use of fixed signals. These are permanently positioned by
the side of the track and provide some visual information to the train driver. The original
fixed signal consisted of a shaped wooden board that could be rotated on pole round a vertical
axis. If the board was visible to the driver then he would have to stop the train. On the
other hand if the driver couldn’t see the board because it was side-on to him then he would
be able to proceed.

One of the major developments in railway signalling was the introduction of the Semaphore
fixed signal. These consisted of a board that could be moved into several preset positions.
Typically these would have 3 different visible “aspects” which they could be set to: One
aspect to indicate the driver can proceed, another that indicates the driver can proceed with
caution and finally an aspect which indicates that the driver should stop.

9



10 Chapter 2 Background

Around about the same time as the introduction of the semaphore signal, the system for con-
trolling the signals went under drastic change. The Policemen were replaced with professional
Signallers whose job was specifically to manage the railways. A system of pulleys, wires and
levers was also devised to allow multiple signals and points to be controlled from a central
position. This central position became known as a signal box and was manned by one or
more signallers. This centralisation allowed for further safety mechanisms to be installed.
One in particular, namely the interlocking, is of interest to us. The interlocking physically
locked levers if they were unsafe to move.

The next leap in railway technology came from the invention of the electronic track circuit.
These would activate an indicator in the signal box if a segment of track was occupied by
a train. As more and more track circuits became installed it was no longer necessary to
have human intervention to control certain signals. Automatic signals were introduced
which operated completely by track circuits without any intervention from human signallers.
Around this time electric point machines were introduced removing a large amount of
physical work performed by signallers allowing for a greater area of control for each signaller.
Around this time electromechanical relays began to replace purely mechanical relays reducing
the amount of space needed for a signal box.

In the 1920s colour light signals replaced mechanical semaphore signals these where much
brighter than the oil lamps fitted to semaphores and greatly increased the safety of night
time train travel. In the 1930s the mechanical levers were replaced with an electronic control
panel containing switches and buttons. This allowed for the introduction of route setting
where with the press of a button configurations of signals and points would be associated
with a particular route could become activated. Prior to this time many levers would have
had to have been pulled to set many different pieces of equipment. During the 1980s the most
important advance from our point of view took place. The advent of electronic microprocessors
enabled the replacement of the relay and mechanical interlockings with an electronic solid
state interlocking system (SSI) [Cri87]. The main focus of this project will be to investigate
the safety of such solid state interlockings.

2.2 Invensys Rail

Invensys Rail [Inv] and its previous incarnation Westinghouse Rail Systems Ltd have been
involved for over 140 years in producing equipment to increase safety in the railway industry.
Originally they produced air brakes for trains, these had a failsafe state such that if the power
was cut the brakes would automatically stop the train. Later on in the company’s development
they provided support to British Rail when the first solid state digital railway interlocking
was installed in Leamington Spa. Today they supply railway control equipment to companies
based around the globe, including companies based in Australia, Hong Kong, Germany, Spain
and the UK. This project is mainly concerned with one of the solid state railway interlockings
Invensys produces called the Westrace. The Westrace railway interlocking continuously runs
a ladder logic program which prevents the railway control systems from entering a dangerous
state. Ladder logic will be explained in a later chapter. David Kerr and Tony Rowbotham
produced a book that explains the terminology and methodology used in the railway industry
and by Invensys (See [KR01]).



2.3 An Overview of the Railway Domain 11

A

B

C

D
Normal

Reverse

Figure 2.1: A Typical Junction

2.3 An Overview of the Railway Domain

In this section we present the features of the railway domain that are in the scope of this
thesis. We hope to provide the reader with the background information and terminology
necessary to understand the parts of this thesis.

2.3.1 The Railway Topology: Track and Points

We will now present an overview of the physical railway from a topological point of view.
To do this we will present an example of a small track plan of a junction. If the reader is
interested in learning more about the topology of the railway a more detailed description can
be found in [KR01]

2.3.1.1 Track Segments

A section of track is typically broken down into track segments each containing one or more
track circuits to detect the presence of a train. Typically track segments become larger on
long straight stretches of track without any interesting topological features such as junctions
or stations. Likewise track segments become smaller around junctions and stations where
control over train movement is of greater importance.

2.3.1.2 Points

A point is a physical piece of equipment that is used to form a junction. Due to the nature of
the rails and trains it is not possible to physically to just join two segments of track. Instead
a point is needed to act as physical switch controlling the flow of trains through a junction. A
point has two positions which are referred to as normal and reverse. This presents a safety
hazard, for example see figure 2.1, if a train enters the junction b from c when the junction is
locked in the position for normal then the train will be derailed.



12 Chapter 2 Background

2.3.2 Railway Signalling

Signals are the main means used to communicate information regarding the state of the track
ahead of the train. Typically they are placed either on the track side or over hanging the
railway. Visual indications known as aspects are used to convey information to the driver. A
signal will have many such aspects which can be displayed, each with a particular meaning.
The main type of signal considered in this project is the coloured light signal. Typically these
have between one - four aspects each conveying a different indication about the state of the
track ahead. Below is a description of the aspects used for a three light signal.

Green - If this aspect is displayed it indicates that track ahead is clear for a sufficient distance
and the train driver can proceed at full speed to the next signal.

Yellow - This aspect indicates the track immediately ahead in between this signal and the
next is clear however the driver should proceed with caution as a train could be in the
track after that.

Red - This aspect indicates that the track ahead is not clear, the driver should stop and wait
at this signal.

The one aspect signal is typically a fixed red indicating that is not possible to proceed down
the track at this current point in time. The two - four aspect signals are used on tracks with
different speeds to convey different stopping distances. The two aspect signal for instance
would be used on a low speed track segment where stopping distances are relatively short.
Whereas the four aspect signal would be used on a high speed line where stopping distances
are long and the driver needs information for a greater length of track. These signalling
schemes are fixed in the UK however they are not fixed from country to country. On the
continent, for example, they may use different conventions, colours and number of lights on
each signal.

2.3.3 The Westrace Interlocking

The railway interlocking is a key component in ensuring the safety of the railway. Its job
is to apply a set of rules to the requests and commands it receives from the control system
and check whether or not the future state of the railway is safe. If the control signals it
receives do not violate the safety of the railway then these signals are committed to the
physical infrastructure. For example if the human controller requests for a route to be set the
interlocking will process this request and ensure that it does not conflict with other routes
before allowing the command to be passed to the physical railway.

The railway interlocking repeatedly executes a program or set of rules over some discrete time
interval. Each time it uses the set of rules it contains to process a new set of inputs before
committing them as outputs. The Westrace interlocking used by Invensys Rail executes a
so-called ladder logic program to perform this process. The following are the three main
stages of operation in the running of an Westrace interlocking.

Reading of Inputs - Read inputs from the control systems as well as the physical railway
infrastructure.



2.4 Ladder Logic 13

Control System

Railway Interlocking

Physical Railway

Figure 2.2: The Location of the Railway Interlocking

Internal Processing - Execute the ladder logic program with the above inputs and calculate
outputs.

Committing of Outputs - The outputs calculated in the previous cycle are then passed
on to various places including the physical railway.

2.4 Ladder Logic

The Westrace Interlocking performs calculations by executing a ladder logic program [61103].
In the following we will look in more detail at these ladder logic programs. The main concepts
behind their construction and behaviour will be presented. In later chapters we will provide
a formal framework for the verification of these programs.

The international standard for programmable logic controllers IEC 61131 [61103] describes the
graphical language ladder logic. It gets its name from its graphical “ladder” like appearance
which was chosen to suit the control engineers responsible for their design. Each rung of the
ladder is used to compute an output variable from one or more input variables in the rung. In
the railway industry these input variables are referred to as contacts and the output variables
are referred to as coils. A description of the entities representing these variables is as follows:

Coils : These are used to represent values that are both stored for later use and output
from the program. The value of a coil is calculated when a rung fires making use of the
current set of inputs, the previous set of outputs and any outputs already computed for
this cycle. The coil is always the right most entity of the rung and its value is computed
by executing the rung from left to right.

Open Contacts : This entity represents the value of an un-negated variable

Closed Contacts : This entity represents the value of a negated variable.

A Ladder logic rung is built using these entities and connections between them. The shapes of
the connections between the contacts determines how the value of the coil is computed from
them. Using propositional logic for comparison, a horizontal connection between two con-
tacts represents logical conjunction and a vertical connection between two contacts represents
logical disjunction see Figure 2.4.



14 Chapter 2 Background

C

(a) A coil

C

(b) An open contact

C

(c) A closed contact

Figure 2.3: The Entities Used In Ladder Logic

x y

(a) x ∧ y Conjunction

x

y

(b) x ∨ y Disjunction

Figure 2.4: Logical Connectives In Ladder Logic

In section 4 an approach is presented to capture the semantics of ladder logic programs using
propositional logic.

2.5 Previous Work in this Field

Previously James carried out work for Invensys, applying various SAT and model checking
techniques to verify the correctness of a simple pelican crossing and two existing railway
interlockings consisting of approximately 500 rungs (see James [Jam10]).

James used Kanso’s work (See [Kan08]), in particular his translation from ladder logic into
propositional logic, and applied several model checking techniques in order to try and reduce
the complexity of the problems. Both the work by Kanso and James was based on an early
feasibility study by Fokkink and Hollingshead [FH98]. The relationship between a ladder logic
program and propositional logic was discussed in great detail. A method for formulating such
a ladder logic program as a formula in propositional logic was presented. This laid the ground
work for all successive projects involving ladder logic. The possible application of program
slicing was discussed and this was later applied in the work by James [Jam10].

Some of the techniques applied by James to the verification of ladder logic are discussed
below.

Bounded model checking: This was the main topic of the work of Phil James. It had
the advantage that it produced counter example traces which are highly valuable to the
engineers at Invensys. It allowed for the verification of 2000 iterations of the ladder logic
programs provided without programming slicing and up to 20000 iterations of ladder
logic programs with program slicing.

Temporal Induction: This is another technique used in the verification of the ladder logic
programs, it succeeded whenever the inductive verification method Kanso applied also
succeeded. It should however be stronger than inductive verification but no example



2.5 Previous Work in this Field 15

was found to prove this. Temporal induction produced a counter example whenever the
bounded model checking produced a counter example.

Program Slicing: This technique was combined with application of bounded model check-
ing to reduce the state space requiring verification. This reduced the number of rungs
in a ladder logic program by up to a factor of 10.



16 Chapter 2 Background



Chapter 3

Model Checking

In this chapter we will discuss the concept of model checking and how model checking tech-
niques can be used in the verification of safety critical systems. Using model checking has the
advantage over deductive methods1 of verification that it is automatic. However not every
system or property can be verified by this method due to the limits of what is decidable /
computable. One further advantage is that a model checking algorithm will typically provide
a counter example trace. These traces show us the exact sequence of states which brought
about an error. This property is useful to our industrial partners because it can be used by
engineers to find faults in the system. One early model checking procedure was presented
in the work by Clarke [CES86] which verified models formalised in CTL. One the most well
known problems in the field of model checking is state space explosion which also studied by
Clarke and McMillian [CGJ+01, BCM+92]. The number of states in a model of a concur-
rent system increases exponentially in relation to the increase in number of components in
the system. In 2008 Pelnek published a review of the various advances made in this area
[Pel08]. The main focus of the research effort so far has been to reduce the number of states
in our model. This has been achieved through the use of state based reduction, path based
reduction and compositional reasoning. A simple form of state based reduction would be to
remove a state from the search space if it is bisimilar to another state already encountered.
Other methods include program slicing which simplifies the model with respect to the safety
property being verified. The model formed only contains information about the system that
is relevant to the safety property. Progress has also been made in reducing the amount of
physical storage needed for a model using caching and compression. A number of approaches
that make use of randomisation and heuristics are also presented. While these can not prove
an entire system correct they are useful for finding errors.

3.1 Applying Model Checking Techniques to Safety Critical
Systems

Currently there are two main approaches to the problem of verifying the correctness of safety
critical systems namely model checking (See e.g. [ADS+06, Jam10, CGP99]) and theorem

1Restricted forms of deduction can be automated but in general this is not the case.

17



18 Chapter 3 Model Checking

proving (See e.g.[M.S01, BC04]). For the purpose of this document we are concerned with
model checking which is the approach most widely used by industry. The model checking
problem is as follows. Given a model and formula expressing some property we would like
the model to have, under what conditions does the model satisfy the formula. The two
main techniques typically used in model checking are SAT-based model checking and binary
decision diagrams. I will begin by discussing the former, however in order to discuss model
checking we first need several definitions that underlie it.

3.1.1 Propositional Logic and Transition Systems

One must choose a formal mathematical language in order to express the properties of a given
system and reason about them. Building on the work of previous projects [Jam10, Kan08,
FH98]I have chosen propositional logic (See [Mar09]) for this purpose.

Definition 1 (Syntax of Propositional Logic). Given a set of propositional variables V ar, we
define the set of propositional formulas FormV ar to be the least set satisfying the following
conditions:

• ⊥ ∈ FormV ar

• > ∈ FormV ar

• If a ∈ V ar, then a ∈ FormV ar

• If φ1, φ2 ∈ FormV ar, then ¬φ1 ∈ FormV ar, φ1 ∧ φ2 ∈ FormV ar, φ1 ∨ φ2 ∈ FormV ar,
φ1 → φ2 ∈ FormV ar, and φ1 ≡ φ2 ∈ FormV ar

If we view propositional logic as a language then our alphabet consists of the following V ar∪
{⊥,>,∧,∨,¬,→,≡} where p is a symbol representing a variable in V ar and our set of strings
is the set FormV ar.

Definition 2 (Valuation). A valuation is a function v : V ar → {0, 1} which maps each
variable in x ∈ V ar to a value in the set {0, 1}.

Definition 3 (Satisfaction Relation v |= φ).

• v |= >, v 6|= ⊥

• v |= p if p is a variable and v(p) = 1

• v |= ¬φ if v 6|= φ

• v |= φ ∧ ψ if v |= φ and v |= ψ

• v |= φ ∨ ψ if v |= φ or v |= ψ

• v |= φ→ ψ if v 6|= φ or v |= ψ

• v |= φ ≡ ψ if (v |= φ and v |= ψ) or (v 6|= φ and v 6|= ψ)

In order to reason about systems we need a formal notion of a model. One such notion called
a state transition system is presented in [ADS+06]. This allows us to capture the properties
of each state and the relationship between them. Another formalism used to capture models



3.1 Applying Model Checking Techniques to Safety Critical Systems 19

is the Kripke structure which is presented in [CGP99]. The Kripke structure expands upon
the definition of a transition system by adding a label to each state which indicates whether
certain propositional formulas are true in a given state. In this thesis we have chosen not use
the Kripke structures as they are more suited to capturing the semantics of temporal logics.

Definition 4 (Transition System). A transition system M is defined to be a three tuple
(S, S0, R), where

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S × S is a total transition relation.

We also need to be able to reason about reachability in our transition system. That is given
one state what other states can be reached from this state given the transition relation. In
order to decide whether or not a given transition system M is safe we need to we need to
define what it means for a state to be reachable from the initial state. This will allow us to
check that all of the states reachable from the initial state are safe which means that they are
a subset of states that hold under the safety condition.

Definition 5 (Reachability). Given a transition system M = (S, S0, R), we define ReachR(S)
to be the set of states that are reachable from S using the transition relation R. That is
ReachR(S) is the least set of states such that2:

ReachR(S) = {s ∈ S|s = S0 ∨R(r, s) ∧ r ∈ ReachR(S)}

We need to be able to reason whether or not a safety condition holds in a transition system
structure. Therefore we define a safety condition P to be a set of states that we consider
safe and acceptable. Consider a typical microwave oven with a door and an on or off switch
which controls cooking. The set of safe states are those in which the door is closed or the
oven is off. If the oven could start cooking with the door open it would be unsafe and could
potentially be dangerous. The system should be constructed in such a way that this state is
unreachable.

We can define a system to be safe if all of the reachable states in a system satisfy the safety
condition.

Definition 6 (Model Safety). We say that a transition system M = (S, S0, R) is safe with
respect to a safe set of states P if the following holds.

ReachR(S0) ⊆ P

3.1.2 Model Checking Methods

There are several model checking methods in use today of which we will now briefly describe
one. The main technique underlying the model checking component of the SCADE suite is
called SAT-based model checking [SSS00, BCC+99, ADK+05]. SAT-based model checking

2In other words ReachR(S) is inductively defined



20 Chapter 3 Model Checking

works by formulating a model checking problem in propositional logic and then passing that
representation of the problem to a SAT-solver (see [CESS08]) which then attempts to satisfy
the propositional formula. When translating the above formulae to a format that we can
input into a SAT-solver we replace the explicitly stated sets symbolically with predicates.

We need a predicate to represent in propositional logic that a state s is in a set of states S.
We define a predicate S(s) such that:

s ∈ S ↔ S(s)

We also need to define a predicate that allows us to represent a sequence of states linked by
the transition relation. We shall call such a sequence of states a path through our transition
system.

Definition 7 (Path Predicate). The path predicate is said to hold over a sequence of states
s0, ..., sn if for every i ∈ {0, ..., n− 1} the transition relation holds in the corresponding state
and the successive state in the sequence.

path(s0, ..., sn) = ∀i ∈ {0, ..., n− 1} : R(si, si+1)

In order to formulate our model checking problem, into a format which is accepted by a SAT-
Solver, we must first represent in first order logic what it means for a transition system to
be safe. This is important because we want to be able to show that all paths from the initial
state lead to a state in which a predicate P representing a safety property holds.

∀n ≥ 0 : ∀s0...sn : path(s0, ..., sn) ∧ S0(s0)→ P (sn)

Lemma 1. It is the case that a state s is reachable in a transition system M = (S, S0, R)
only if there is a path from one of the initial states S0 which ends with s.

s ∈ ReachR(S)⇔ ∃path(s0, ..., sn) ∧ s0 ∈ S0 ∧ sn = s

There are many different methods to solve the model checking problem using a SAT-solver.
The first we shall discuss is called bounded model checking. This technique was devised
by Clarke [CBRZ01] to solve model checking problems without the use of binary decision
diagrams. This is performed using the above formula by instantiating the universal quantifier
with an increasingly large n and then passing the formula to a SAT-solver to prove until a
predefined bound on the search depth is reached or the formula is found to be falsifiable. This
allows systems, with large state spaces that cannot be fully traversed, to have some form of
verification applied to them. This presents a problem in that we do not know if the entire
state space has been verified. We only know that all states that are connected by a path of
length n or less to the starting state have been verified.

Definition 8 (Bounded Model Checking). Bounded model checking is defined by the following
formula.

bmcn(s0, ..., sn) = path(s0, ..., sn) ∧ S0(s0)→ P (sn)



3.2 St̊almarck’s Algorithm 21

Another SAT-Based model checking method allows us to go beyond just proving that the
system is safe for n steps and allows us to prove that it is safe in its entirety, namely induction
over time. However we will not cover this in this work; for more information see James
[Jam10]. Moving on from general model checking techniques we will now study, in some
depth, two approaches to deciding the validity of propositional formulas.

3.2 St̊almarck’s Algorithm

One of the techniques behind the SCADE suite is a patented tautology checker known as
St̊almarck’s algorithm [SS00, St̊a94]. It has been used successfully to verify railway inter-
lockings in using an earlier incarnation of SCADE by Prover Technologies called NP-Tools
[Bor98] and in an un-named tool [GvVK95]. The wide spread usage of the algorithm has
caused it to come under much scrutiny by both academia and industry. This has led to the
correctness of the algorithm being explored. In one case study the algorithm was verified in
the interactive theorem prover Coq by Letouzey [LT00]. Such scrutiny has given it the repu-
tation for reliability and it is trusted by industry for use in safety critical applications. More
recently the algorithm has been extended to first order logic [Bjö05, Bjö09] which is just one
of many improvements and developments in its history. In the following we will try to provide
the reader with an understanding of how St̊almarck’s algorithm works. This algorithm was
influenced by two well established proof systems. The cut elimination principle of Gentzen’s
Sequent Calculus [Bus98] inspired a branch and merge operation called the Dilemma Rule.
The semantic tableaux of Smullyan [Smu69] inspired the proof rules. We will begin by pre-
senting the necessary theoretical background and then proceed to discuss the algorithm in
detail.

3.2.1 Introduction

St̊almarck’s algorithm makes use of equivalence classes through the use of a data structure
known as a triplet. A set of simple rules is then applied to these triplets in order to deduce
new equations from existing ones. If these rules become exhausted and no contradiction is
found, then the algorithm applies the so-called Dilemma rule. The application of the Dilemma
rule to our proof search causes it to branch into two derivations the conclusions of which are
then merged. I will now provide a brief overview of the algorithm so that the reader is able to
understand these concepts before moving on to a more detailed description of the algorithm.
When performing examples we will restrict ourselves to formulas built only from negation
and implication. The complete proof system can handle propositional formulas built from all
of the standard connectives (∧,∨,⇒,¬,=,≡, ...).

We begin by transforming any propositional logic formula into a formula containing only
propositional variables, implication operator and ⊥ (false). This is performed by repeatedly
applying the meaning preserving transformations that follow.



22 Chapter 3 Model Checking

A ∨B to ¬A→ B

A ∧B to ¬(A→ ¬B)

¬¬A to A

¬A to A→ ⊥

Now that we have a formula built from only one propositional operator, we can translate it
into the triplets. These represent sub-formulas using so-called triplet variables. Given an im-
plication formula A consisting of variables a1, . . . , an, and compound sub-formulas B1, . . . , Bk
where the sub-formula Bk is A, every sub-formula Bi is of the form Ci → Di , Ci and Di are
sub-formulas of A and occur amongst B1, . . . , Bi−1 or a1, . . . , an. We introduce new variables
b1, . . . , bk to represent each of the compound sub-formulas these are called triplet variables.
When a triplet variable bi represents a formula Bi we write rep(Bi) = bi, propositional vari-
ables represent themselves i.e. rep(ai) = ai. Using this notation it is now possible to represent
the formula A as the following set of triplets

{(b1, rep(C1), rep(D1)), . . . , (bk, rep(Ck), rep(Dk))}

The notation (x, y, z) abbreviates the triplet formula x ↔ (y → z). Falsity and truth are
treated as a special class of variable, we write ⊥ as 0 and > as 1.
Example 1. The formula ((p→ q)→ p)→ q becomes

(b1, p, q)

(b2, b1, p)

(b3, b2, q)

where b3 is the triplet variable representing the original formula and b2 represents (p→ q)→ p
and b1 represents p→ q.

To check whether a formula is a tautology, we assume that it is false and then apply either
simple rules or a branch and merge operation called the dilemma rule. Our final goal being
to derive a contradiction from the formula. We will now look at proofs using the simple rules.

The simple rules take a triplet that matches its premises and its conclusions provide us with
fresh information allowing us to derive a new set of triplets. Consider the following triplet
rule

(0, y, z)
(r1)

y/1 / z/0
(3.1)

by the definition of the → operator, if formula y → z is false, then we know that y is true
and z is false. We call triplets that are contradictory terminal. The terminal triplets are
(1, 1, 0), (0, x, 1) and (0, 0, x). Taking the triplet (0, x, 1) as an example, we know that the



3.2 St̊almarck’s Algorithm 23

formula x→ 1 is a tautology, the whole triplet therefore is a contradiction. We have devised
the following example to demonstrate this approach.
Example 2. The following triplets represent the formula (p→ q)→ p→ q

(b1, p, q)

(b2, p, q)

(b3, b1, b2)

We assume that the formula is false i.e. b3/0. We then apply the simple rule r1 to the triplet
that results from that assumption. That triplet is then dropped from the set.

(b1, p, q)

(b2, p, q)

(0, b1, b2) =⇒
(b1, p, q)[b1/1, b2/0]

(b2, p, q)[b1/1, b2/0] =⇒
(1, p, q)

(0, p, q)

To complete the proof we apply the rule r1 again to the triplet (0, p, q).

(1, p, q)

(0, p, q) =⇒
(1, p, q)[p/1, q/0] =⇒
(1, 1, 0)

The resulting triplet (1, 1, 0) is terminal. Since we assumed that our original formula (p →
q) → p → q is false and have shown that this assumption produces a contradiction, we can
conclude that the formula is a tautology.

There are six remaining simple rules which we have not used in this example:

(x, y, 1)
(r2)

x/1

(x, 0, z)
(r3)

x/1

(x, 1, z)
(r4)

x/z

(x, y, 0)
(r5)

x/¬y



24 Chapter 3 Model Checking

(x, x, z)
(r6)

x/1 z/1

(x, y, y)
(r7)

x/1

We use ¬y to represent the negated value of the boolean variable. The simple rules by them-
selves do not yield a complete proof system. A form of branching is required for completeness.

3.2.2 Dilemma Rule

The branching required for completeness comes in the form of the dilemma rule. Applying
this to a set of triplets T causes two branches to form with a variable x assumed to be true
in one and false in the other. The two sets of triplets T [x/1] and T [x/0] are the starting
point for the derivations D1 and D2 respectively. The output of the merge operation depends
on whether the resulting set of triplets for each derivation contains a terminal triplet. If D1

produces a terminal triplet, then the result of the merge operation is the outcome of D2 and
vice versa. If neither of the sets contain a terminal triplet, then what results is a variable
instantiation S which is the intersection of the triplets contained in S1 and S2. The value of
x does not affect the conclusions, they are independent of the value of x, therefore they are
collected by this intersection. The following example was taken from the work of St̊almarck
[SS00].

Example 3. We will now show that the following formula is a tautology

(((p→ p)→ p)→ (p→ q))→ (((p→ q)→ p)→ q)

We derive the following triplets from the formula

(b1, p, q)

(b2, b1, p)

(b3, b2, q)

(b4, p, q)

(b5, p, p)

(b6, b5, p)

(b7, b6, b4)

(b8, b7, b3)

The following shows the correspondence between the triplets and the sub-formulas.

(((p
b5→ p)

b6→ p)
b7→ (p

b4→ q))
b8→ (((p

b1→ q)
b2→ p)

b3→ q)

As with the previous example we start our proof by assuming that the formula, which corre-
sponds to the triplet b8, is false. We then proceed to apply the rules repeatedly and show a



3.2 St̊almarck’s Algorithm 25

contradiction. The proof derivation starts with the application of the rule r1 to the triplet for
b8

(b1, p, q)

(b2, b1, p)

(0, b2, q)

(b4, p, q)

(b5, p, p)

(b6, b5, p)

(1, b6, b4)

[b7/1, b3/0]

We then apply the rule r1 again this time to the triplet (0, b2, q):

(b1, p, 0)

(1, b1, p)

[b2/1, q/0]

(b4, p, 0)

(b5, p, p)

(b6, b5, p)

(1, b6, b4)

[b7/1, b3/0]

This is followed by the application of r7 to the triplet (b5, p, p) and the rule r4 to the resulting
triplet (b6, 1, p).

(b1, p, 0)

(1, b1, p)

[b2/1, q/0]

(b4, p, 0)

[b5/1]

[b6/p]

(1, p, b4)

[b7/1, b3/0]



26 Chapter 3 Model Checking

The final simple rule we are going to apply is r5 to each of the triplets of the form (x, y, 0).

(b1, p, 0)

(1, b1, p)

[b2/1, q/0]

(b4, p, 0)

[b5/1]

[b6/p]

(1, p, b4)

[b7/1, b3/0]

Following the above derivation it is no longer possible for us to apply any simple rules. We
are left with only two triplets: (1,¬p, p) and (1, p,¬p). The only option left for us is to apply
the dilemma rule. We branch on p, assuming it is true in one branch and false in the other.
Both branches contain the triplets (1, 0, 1) and (1, 1, 0). The triplet (1, 1, 0) is terminal and
therefore results in a contradiction being reached in both branches. Therefore a contradiction
can be derived from our original assumption that the formula was false. We can conclude
that this is not the case and that this formula is indeed a tautology.

3.3 Underlying Theory

We will now discuss the design of an efficient algorithm for finding derivations in the proof
system described in the previous section. The algorithm is known as “St̊almarck’s satura-
tion method”. In order to get a better understanding of how a tautology checker such as
St̊almarck’s algorithm functions in a correct and efficient manner one might look at some of
the proof systems which underlie it. One would investigate Gentzen’s Sequent Calculus PK
which can be found in Appendix A.1. However if the reader is interested in a more detailed
discussion of the Sequent calculus it can be found in a book by Buss [Bus98].

There is one more classic proof method that is needed in order to understand the underlying
theorem behind St̊almarcks algorithm. Smullyan’s analytic tableaux [Smu69] system works
by analysing cases where a valuation was assigned to a formula and its effect on the valuation
of its sub-formulae, see appendix A.2. It is possible for this method to repeat a search in a
part of the search space it has already explored. This is due to the fact it does not retain
any information about the search space it has already explored. St̊almarck saw it necessary
to introduce a set of rules that not only took into account the valuation of a formula but also
the valuations of its immediate sub-formulae and their complements. It was also beneficial
to capture whether or not two formulas have the same truth value. St̊almarck’s algorithm
works on equivalence relations of formulas. The domain of the equivalence relations is the
set of subformulas and their negations of a given formula X that one tries to refute. The
triplets presented in Sect. 3.2 are used to denote representations of equivalences classes of
these relations. This brings us to the set of rules which underlie St̊almarck’s proof system.



3.3 Underlying Theory 27

Definition 9 (Proper Rules). Given a rule for a connective ◦ in the following form:

F1 ≡ G1, . . . , Fn ≡ Gn
F ≡ G

Where ≡ is logical equivalence and with every Fi, Gi ∈ {A,B,A ◦B,¬A,¬B,>,⊥}. The rule
is proper if and only if it satisfies the following properties:

{F1 ≡ G1, . . . , Fn ≡ Gn} |= F ≡ G (3.2a)

{F1 ≡ G1, . . . , Fn ≡ Gn} 6|= ⊥ (3.2b)

{F1 ≡ G1, . . . , Fn ≡ Gn} − {Fi ≡ Gi} 6|= F ≡ G (3.2c)

An in depth discussion of these proper rules and the proof system can be found in the work
by Jakob Nordström [Nor01]. We have included the proper rules presented in the work by
Nordström in appendix A.3.

These rules alone do not give a complete system for propositional logic. In order to achieve this
we put a form of branching back into our system whilst retaining the sub-formula property.
A proof system obeys the sub-formula property if every proof that can be made using the
proof system is constructed using sub-formulas of the formulas to be proved. The following
principle of bivalence was part of the proof system KE/I introduced by Mondadori and studied
in detailed by D’Agostino [D90].

Definition 10 (Principle of Bivalence3).

(PB)
A ≡ >|A ≡ ⊥

A combination of the principle of bivalence and the proper rules yields a system that is
complete for propositional logic. A proof system is said to be complete for propositional logic
if given a tautological formula, the proof system can derive that it is in fact a tautology for
more information see [Bus98]. We now need to be able to reason about what it means for
formulas to have the same value. This can be achieved through the use of formula relations
and equivalences classes.

Definition 11 (Formula Complement). We write the complement of a formula A as A′. If
A = ¬B then A′ is B and if this is not the case then A′ = ¬A.

Definition 12 (Formula Relation). We define a formula relation ∼ to be an equivalence on
a formula X . The domain of the equivalence relation is S(X), the set containing all of the
subformulas of X (including >) and the negations of these subformulas. it is closed under
following constraint; if A ∼ B then A′ ∼ B′

We define R(A ≡ B) as the least formula relation that relates A and B and contains R. We
say that A ≡ B is an association between A and B.

If we take an association m : A ≡ B then the complementary association is m′ : A ≡ B′.
These two associations are contradictory. Having this property of associations allows us to

3The “|” in this definition means “or”. Either A is true or A is false.



28 Chapter 3 Model Checking

refute a formula. The identity relation on S(X) is the smallest formula relation and is written
X+. We use the smallest formula relation to perform partial valuations of a formula X. The
partial evaluation X+(X ≡ >) is denoted by X> and X+(X ≡ ⊥) by X⊥ We will now present
a short example demonstrating how the simple rules can be applied to a partial evaluation.

Example 4. If we take a propositional formula X = ¬(C ∨ D) where C and D are both
propositional variables. Then we can take a partial evaluation of the formula:

X> = {[¬(C ∨D),>], [C], [D], [C ∨D,⊥], [¬C], [¬D]}

The square brackets seen above are used to denote equivalence classes. We can then apply the
following rules in sequence to the above set of equivalence classes.

P ∨Q ≡ ⊥
P ≡ ⊥

P ∨Q ≡ ⊥
Q ≡ ⊥

P ≡ ⊥
P ′ ≡ >

The application of the first rule and third rule results in R1 the application of the second rule
and third rule to R1 results in R2.

R1 = {[C ∨D,⊥, C], [D][¬(C ∨D),¬C,>], [¬D]}

R2 = {[C ∨D,⊥, C,D], [¬(C ∨D),>,¬C,¬D]}

Since we can not apply any futher rules to R2 we say that it is a model of ¬(C ∨D).

3.3.1 The Dilemma Rule

Since the simple rules alone do not give a system that is complete for propositional logic a
form of branching is needed. This branching comes from the Dilemma rule which allows us
to perform a branch and merge operation. A Dilemma derivation takes the following format.

R
R(A ≡ B) R(A ≡ ¬B)

(derivation) (derivation)

R1 R2

R1 uR2

Starting with a formula relation R, we then choose two different non complementary equiva-
lence classes in R and from each of these we take a formula namely A and B. We then form
two new dilemma derivations using the formula relation with A associated with B, R(A ≡ B)
and where A is associated with ¬B, R(A ≡ ¬B). The conclusion of these two derivations
is R1 and R2 respectively. We take the intersection of R1 and R2 in order to collect the
common conclusions of both derivations. We cease applying rules as soon as a derivation
causes both a formula and its complement to be placed in the same equivalence class as this
is explicity contradictory. We define R1 uR2 to be R2 if a contradiction is reached in R1, R1



3.3 Underlying Theory 29

if a contradiction is reached in R2. If neither of the previous two cases are applicable then
R1 uR2 is R1

⋂
R2, the intersection of the equivalence classes in R1 and R2.

Definition 13 (The Dilemma Derivations). We will now define the notion of a dilemma
derivation.

Simple Rules. If we apply one of the simple rules to an equivalence class R1 and the result is
R2, then we define Π to be a Dilemma derivation of R2 from R1 i.e. Π = R1R2. This is
written as the assertion Π : R1 =⇒ R2. If we are in the case where it is not possible to apply
a simple rule to R then R itself is defined to be a derivation of R from R. The proof depth
for both of these cases d(Π) = 0.

Composition. It is possible to compose two proofs. If Π1 : R1 =⇒ R2 and Π2 : R2 =⇒ R3

then after composition they become Π1Π2 : R1 =⇒ R3. This has the advantage that the
composed proof only contains one copy of R2 whereas the two separate proofs each have their
own copy of the relation. The depth of the proof formed by the composition is defined to be
d(Π1,Π2) = max(d(Π1), d(Π2)).

Dilemma Rule. If Π1 : R(A ≡ B) =⇒ R1 and Π2 : R(A ≡ ¬B) =⇒ R2, then an application
of the dilemma rule takes the following form:

R
Π1 Π2

R1 uR2

We call the maximum number of branches open simulataneously the depth of the proof. This
is a derivation of R1 uR2 from R which has a depth max(d(Π1), d(Π2)) + 1.

Remark 1 (Proof Hardness). We say that a formula relation R with a derivation Π : R =⇒
⊥ and d(Π) ≤ k is k-easy. Similarly we say that a formula relation R for which there does
not exist any derivation Π : R =⇒ ⊥ with d(Π) > k is k-hard.

Definition 14 (Hardness Degree). A relation R that is both k-easy and k-hard for some k is
said to have a hardness degree k .

According to St̊almarck [SS00] most of the problems encountered in industry are either 1 or
2 hard. One of the explanations of this is that the large number of propagation rules cause
proofs performed using the system to only have a few nested branches. Industrial systems
that have been designed by one team for a single purpose can typically be modelled as a large
number of easy formulae. If however one has several complicated systems that are running
concurrently and interacting with one another they can produce behaviour that is hard to
reason about formally.

3.3.2 Implementing the Algorithm

Definition 15 (Triplets). The data structure used in the implementation of the algorithm is
the triplet. These triplets encode the information contained within our equivalence classes.
The triplet representation of a formula X is obtained by adding extra triplet variables that
represent compound subformulas of X. Triplets have the form x : y ◦ z where x is the triplet
variable representing the subformula containing two literals y, z and a binary operator ◦. A
literal is a real variable or triplet variable that is either negated or un-negated.



30 Chapter 3 Model Checking

Example 5. The following is the triplet representation of the formula:

¬(A→ B) ∧ ¬(¬B → ¬A) ∨ (A→ B) ∧ (¬B → ¬A)

t: >

a: A

b: B

c: a→ b

d: ¬b→ ¬a

e: c ∧ d

f : ¬c ∧ ¬d

g: f ∨ e

Definition 16 (Saturation Algorithm). We say that a relation R is k-saturated if and only
if for every possible dilemma derivation Π : R =⇒ S with d(Π) ≤ k it is the case that
R = S holds. This means that no new conclusions are derived from proofs of depth k or
less. 0-saturation is performed by applying every possible propagation rule to the relation. It
proceeds by picking a compound subformula from the relation and applying a rule. It then
applies rules to triplets that contain variables affected by the application of the first rule. If
no contradiction is reached some formula of branching must be applied and we proceed by
applying k + 1-saturation.

saturate(R,0)0 =

Q := Compound(R)

while non-empty(Q)

do

remove some q from set Q

if contradictory(R(q))

then return R(q)

else Q := Q union affected(R(q) - R)

R := R(q)

od

return R

The function Compound(R) returns the set of compound subformulas in the domain of R. In
order to keep the complexity of the algorithm to a minimum this is restricted to contain only
one representitive subformula from each equivalence class. This is referred to as using inde-
terminate equivalence classes. At the start of the algorithm Q contains our initial collection
of sub formulas. We then pick one element q from Q and apply a simple rule that will allow
us to deduce some information from q. This is the point in the algorithm where one of the
propagation rules is applied. The function R(q) applies one propagation rule if any are appli-
cable. A rule is said to be applicable in this situation if all of the formulas in the premise of



3.3 Underlying Theory 31

the rule can be found in the set of formulas containing q. The result of R(q) is the formula
relation R(A ≡ B) if an applicable rule can be found otherwise it is R. The application of a
propagation rule produces a set of new equivalences. This set which we shall refer to as N is
described using the set minus operation in the algorithm, R(q)−R. We now add to our pool
the set of sub formulas that have been affected by the application of the rule. The formulas
that may have been affected include all of those in N , all the sub formulas contained in an
equivalence class or its complement for every formula in N and any formula that contains a
formula in N as a sub formula. The following optimisation is made in order to lower the com-
plexity of the algorithm. If a variable v is in one of the indeterminate equivalence classes then
any other formulas that also contain v are only placed into our set of formulas to be processed
if they contain a second variable in the same equivalence class as v or its compliment.

(k+1)-saturation is the embodiment of the dilemma rule. Branching is achieved by making two
recursive calls to the k-saturation algorithm with the two complimentary formula relations.

saturate(R, k+1) =

repeat

L := Sub(R)

R’ := R

for each l in L

do

R1 := saturate(R(l equiv FALSE), k)

R2 := saturate(R(l equiv TRUE), k)

if contradictory(R1) and contradictory(R2)

then return R1 union R2

else if contradictory(R1)

then R := R2

else if contradictory(R2)

then R := R1

else R := R1 intersect R2

od

until R’ = R

return R

The function sub(R) returns the set of all the subformulas in R including variables and com-
pound subformulas. In a similar fashion to 0-saturation only one formula from each of the
indeterminate equivalence classes is placed into our set of formulas. The algorithm then iter-
ates, picking formulas from this set, performing a dilemma derivation by making two recursive
calls of the saturation algorithm. If both of the derivations are contradictory then the loop
finishes and R1 ∪ R2 is returned as the result of this function call. If one of the deriva-
tions is contradictory then that derivation is discarded and the formula relation produced by
the remaining derivation is assigned to R. If neither of the formula relations produced are
contradictory then R becomes the intersection of the two formula relations produced by the



32 Chapter 3 Model Checking

derivations. This is repeated until no new equivalences can be derived by from our set of for-
mulas. This differs from a breath first search or iterative deepening algorithm in that we are
constantly gathering information in the form of equivalences. These equivalences one from
level of saturation (k-saturation) can be used in the next level of saturation (k+1-saturation).

Given that we have given a detailed description of the working of St̊almarcks algorithm in
both a theoretical and practical setting. We will now proceed to give a detailed description
of another technique that is used in the Scade suite.

3.4 Binary Decision Diagrams

We will now discuss another technique used to decide the validity of propositional formulas
called binary decision diagrams. These were originally introduced by Akers [Ake78] in order
to provide an “implementation free” description of boolean functions. This is another of the
techniques used in the verification engine of SCADE .

3.4.1 Introduction

In the early days of verification the state space of a system being modelled was expressed
explicitly using data structures such as adjacency lists. While this approach was sufficient for
the verification of small systems with only a few interacting components it ran into difficulties
as systems became increasingly complex. Models of systems created using this apporach
suffered from state space explosion and grew exponentially in size. One solution to this is
symbolic model checking which was proposed by McMillian in his PhD Thesis [McM92]. The
state space is represented implicity using Bryant’s ordered binary decision diagrams (OBBDs)
[Bry86]. A performance review of several BDD packages can be found in the work by Bryant
[YBO+98]. While this review may be slightly out of date in terms of performance, it does
present a comparison between the different types of BDD techniques available.

A BDD is a graph representing a boolean function and a form of symbolic model checking
which represents state space implicitly rather than explicitly. This was one method for dealing
with the state space explosion problem. Vertices represent boolean variables and transitions
out of a vertex represent some assignment to that variable.

They offer the following benefits from a model checking perspective.

• We can convert any boolean function into a unique and canonical BDD representation.

• The logical operators ∧,∨,¬ . . . etc have a representation with complexity proportional
to the product of the complexity of their inputs.

3.4.2 A Formal Introduction to BDDs

In the following we will present a more formal definition of binary decision diagrams which
follows the work of Bryant [Bry86]. Bryant introduces the notion of a reduced ordered binary
decision diagram (ROBDD) which combines ideas presented earlier by several different people



3.4 Binary Decision Diagrams 33

working in the field. Using these ROBBDs Bryant then discusses the possibilities for their
practical use in verification. He then provides a concrete example of the verification of an
arithmetic logic unit demonstrating this.

Definition 17 (Binary Decision Diagram). We define a binary decision diagram to be an
acyclic and directed graph G(V,E) with:

• A set of labelled vertices V

– Terminal vertices that are labelled 0 or 1

– Non-terminal vertices that are labelled by a variable xi ∈ X

• A set of directed edges E ⊇ V × V that are one of the following

– A “low-edge” labelled by 0

– A “high-edge” labelled by 1

These binary decision diagrams on their own do not respresent a canonical form for the
representation of propositional formulae. We must restrict them to a subset which obey
certain properties. The first of which we shall consider is an ordering on the variables.

Definition 18 (Ordered Binary Decision Diagram). An ordered binary decision diagram
(OBDD) is defined by extending the above definition with an ordering on the variables.

An ordering on the set of variables used to labelled vertices: x0 < x1 < x2, . . . , < xn−1.

Figure 3.1 shows an example of a binary decision diagram of the following formula.

(x1 ∧ x2) ∨ (x3 ∧ x4)

This should allow the reader to visualise how a binary decision diagram would look like. The
above formula can be written using boolean function notation as follows [Bry86]. I will use
this notation in the context of BDDs.

x1 · x2 + x3 · x4

We are now ready to introduce an important sub-class of BDD, the canonical Reduced Ordered
BDDs. These are widely used in model checking as they provide the most compact represen-
tation of a given boolean function and are one of the techniques employed by SCADE ’s built
in model checker.

Definition 19 (Reduced Ordered Binary Decision Diagram). A BDD is a Reduced Ordered
BDD if it has the following properties.

1. The rank of any parent vertex is less than its two children.

∀
v∈V \{0,1}

rank(v) < min(rank(high(v)), rank(low(v)))



34 Chapter 3 Model Checking

x1

x2

1

x3
0

0

x4

1

1

1

1

0

0

0

Figure 3.1: A Simple Binary Decision Diagram

2. The children of internal vertices are distinct, that is for an internal vertex v, high(v) 6=
low(v)

3. The BDD does not contain any isomorphic subgraphs.

Requiring that the children of internal vertices are distinct removes nodes that are redundant
and whose value has no effect on the evaluation of the function from this point on in the graph.
The isomorphism condition removes subgraphs that repeat some property of the formula.

We will now provide a formal basis for reasoning about binary decision diagrams. To do this
we represent propositional formulae as functions. We will use a function f which is of the
type f : Bn → B. The main operation we will be applying is to restrict an argument of a
function to a certain value. This leads us to the following definition.

Definition 20 (Restriction). A restriction on the variable xi in a function f to the value b
is denoted by f |xi=b. For any arguments x1, . . . , xn a restriction is defined as:

f |xi=b(x1, . . . , xn) = f(x1, . . . , xi−1, b, xi+1, . . . , xn)

Using this restriction we can perform a “brute force” construction of a binary decision dia-
gram. This is achieved through branching over each variable and restricting the subsequent
function call.

Definition 21 (Shannon Expansion). Restriction upon a function allows us to define the
Shannon expansion of a function around a variable xi as the following:

f = xi · f |xi=1 + xi · f |xi=0



3.4 Binary Decision Diagrams 35

The value of a function depends on specific input variables which can be represented using
the following.

Definition 22 (Dependency Set). The dependency set of a function f is defined as

If = {i|f |xi=0 6= f |xi=1}

We would like to be able to reason about the combinations of variables that cause a boolean
function to evaluate to 1.

Definition 23 (Satisfying Set). The satisfying set of a function f is defined as follows:

Sf = {(x1, . . . , xn)|f(x1, . . . , xn) = 1}

Since we are interested in the application of binary decision diagrams to real life industrial
problems, it is necessary to take into account the efficiency of the technique we are applying.
There are many different techniques for the optimisation of verification using binary decision
diagrams. We will now consider one aspect of a binary decision diagram which has a sub-
stantial effect on it’s graph size. That aspect is the ordering of the arguments in the boolean
function being represented.

Consider the following two functions:

x1 · x2 + x3 · x4 + x5 · x6 (3.3)

x1 · x4 + x2 · x5 + x3 · x6 (3.4)

1

2

3

4

5

6

10

Figure 3.2: ROBDD of (3.3)

This can be generalised to 2n arguments.



36 Chapter 3 Model Checking

1

2 2

3 3 3 3

4 4 4 4

5 5

6

10

Figure 3.3: ROBDD of (3.4)

• x1 · x2 + . . .+ x2n−1 · x2n is represented by a graph with 2n+ 2 vertices

• x1 · xn+1 + . . .+ xn · x2n is represented by a graph with 2n+1 vertices

It is clear from Figures 3.2 and 3.3 that the ordering of the variables greatly affects the size of
the resulting BDD. Once a variable order has been picked deciding whether a better ordering
can be found is hard problem [BW96] and is known to be NP-complete [CLRS01]. There
are quicker ways of finding a good variable ordering which typically involve using heuristics,
however these are not guaranteed to produce results.

It is not always the case that we can find some ordering which allows us to represent a
function using a “small” BDD. There are certain classes of function which have an inherent
complexity. Functions in these classes have “large” BDDs irrespective of the ordering applied
to the variables. One such class is the functions for binary integer multiplication.

Definition 24 (Binary Integer Multiplication). A binary integer multiplier is defined as hav-
ing two binary words as inputs, a1, . . . , an and b1, . . . , bn .The output of the integer multiplier
is described by a function

muli(a1, . . . , an, b1, . . . , bn)

for all i with 1 ≤ i ≤ 2n representing a binary encoding for the 2n output bits.

We then take a permutation π : {1, . . . , 2n} → {1, . . . , 2n} of the numbers 1, . . . , 2n. The
function muli(xπ(1), . . . , xπ(2n)) is denoted by a graph G(i, π) with the permutation π being
applied to the inputs x1, . . . , x2n

Theorem 1. For any π there exists an i, 1 ≤ i ≤ 2n, such that G(i) contains at least 2n/8

vertices.

The proof of Theorem 1 makes use of 2 properties of binary multiplication namely commuta-
tivity and binary bit shifts which we will now explain.

Definition 25 (Commutativity). A binary relation ∗ on a set S is said to be commutative if
it satisfies the following property.



3.4 Binary Decision Diagrams 37

∀x, y ∈ S : x ∗ y = y ∗ x

If one of the input words of the binary multiplication is a power of 2 then the multiplication
algorithm acts as a bit shifter. If the word b represents a number 2j then

[a · b]i =

{
ai−j if j < i ≤ j + n
0 otherwise

We will now demonstrate a binary bit shift using a small example to give the reader an
impression of the behaviour of this property.

Example 6 (Example Bit Shift). Consider the a binary encoding of the number 23 with j = 3
a = 00001000 and an arbitrary binary number b = x8x7x6x5x4x3x2x1 . If we multiply these
two numbers together we obtain a third number c = a ∗ b = x8x7x6x5x4x3x2x1000. c is the
number b with a left shift of 3 applied. The output word c consists of j-many zeros with the
first 5 bits of a appended them.

We will now begin the proof of the inherent hardness of BDD size for binary multiplication.

Proof 1 (Theorem 1). We begin by defining a number t for a permutation π : {1, . . . , 2n} →
{1, . . . , 2n} this allows us to consider all possible orderings of the input variables.

Inorder to decide which input to use as our control we need to determine whether or not the
permutation has caused each numbers input bits to migrate out of their half of the original
input sequence. We define a number t to be the number of input bits from a which remain in
their half of the input steam.

t = |{π(j)|1 ≤ j ≤ n, π(j) ≤ n}|

We define the sets F and L as follows:

If t ≥ n
2 then

F = {π(j)|1 ≤ j ≤ n, π(j) ≤ n}

L = {π(j)|n+ 1 ≤ j ≤ 2n, π(j) > n}

If t < n
2 then

F = {π(j)|1 ≤ j ≤ n, π(j) > n}

L = {π(j)|n+ 1 ≤ j ≤ 2n, π(j) ≤ n}



38 Chapter 3 Model Checking

For 1 ≤ i ≤ 2n we define a set Fi as

Fi = {j|j ∈ F,∃k ∈ L(j + k − (n+ 1) = i)}

we set qi = |Fi|

We then define a set of sequences:

Si = {x1, . . . xn|∀j ∈ {1, . . . , n}, xj = 0 if π(j) /∈ Fi}

There are n−qi variables in these sequences which are fixed. Si therefore contains 2qi elements.

Every sequence in Si leads to a unique vertex in G(i).

This is shown by a proof by contradiction.

We assume we are able to find two sequences x1, . . . , xn and x′1, . . . , x
′
n such that for some j,

π(j) ∈ Fi and xj 6= x′j (i.e. x1, . . . , xn 6= x′1 . . . x
′
n) that both lead to the same vertex in G(i)

We then define two more sequences, xn+1, . . . , x2n and x′n+1, . . . , x
′
2n such that:

xk = x′k =

{
1 if π(j) + π(k)− (n+ 1) = i
0 otherwise

There is exactly one solution to the equation π(j) +π(k)− (n+ 1) = i and therefore one value
of k for which xk and x′k equal 1.

Since the sequences we just defined were the same, we know that both of the sequences
x1, . . . , x2n and x′1, . . . , x

′
2n end at the same terminal vertex in G(i).

This cannot be the case however since we know that the output functions are different.

muli(xπ(1), . . . , xπ(2n)) = xj

muli(x
′
π(1), . . . , x

′
π(2n)) = x′j 6= xj

From this contradiction we can therefore conclude that G(i) must contain at least 2qi vertices.

Hence it suffices to show that for at least one i the number qi has order of magnitude n.

This is shown by the following lemma.
Lemma 2 (Counting Argument). If A,B ⊆ {1, . . . , n} each containing at least n

2 elements.
For 1 ≤ i ≤ 2n− 1 let

qi = |{〈a, b〉|a ∈ A, b ∈ B, a+ b = i+ 1}|

Then there is some i such that qi ≥ n
8 .



3.4 Binary Decision Diagrams 39

Proof of Lemma 1.

We have that the sets A and B both contain at least n
2 elements each.

Therefore using all the elements a ∈ A and b ∈ B we must be able to construct at least n2

4
ordered pairs 〈a, b〉. Hence:

2n−1∑
j=1

qj ≥
n2

4

Since we know that some qi must be at least as large as the average value of the q′js the
following holds.

qi ≥
1

2n− 1
· n

2

4
≥ n

8

This completes our proof of the inherent complexity of binary multiplication. We have seen
that there are certain classes of hard problems for which there is no “small” BDD repre-
sentation. Despite this, a large number of the problems found in practice do have small
representations, therefore BDDs are feasible for verification.

BDD Implementation

Moving on from our theoretical discussion we will now provide a brief discussion regarding
the implementation of binary decision diagrams [Bry86]. We provide an overview of the
algorithms used in the implementation of binary decision diagrams along with their time
complexity.

The following are some procedures that can be implemented for binary decision diagrams.

Procedure Result Time Complexity
Reduce G reduced to canonical form O(|G| · log|G|)
Apply f1 〈op〉 f2 O(|G1| · |G2|)
Restrict f |xi=b O(|G| · log|G|)
Compose f1|x1=f2 O(|G1|2 · |G2|)
Satisfy-one some element of Sf O(n)
Satisfy-all Sf O(n · |Sf |)
Satisfy-count |Sf | O(|G|)

Figure 3.4: Binary Decision Diagram Procedures

In the following we briefly discuss the above procedures.

3.4.2.1 Reduction

The Reduction algorithm takes an arbitrary function graph as input and then transforms it
into a reduced function graph of the same function.



40 Chapter 3 Model Checking

• Vertices are tagged with labels starting from the terminal vertices and working back to
the root. The label id(v) for a vertex v is assigned such that id(u) = id(v)⇔ fu = fv.

• The algorithm then produces a graph with one vertex for each unique label.

• This removes:

1. Redundant vertices where id(low(v)) = id(high(v)).

2. Isomorphic subgraphs, rooted by two distinct vertices v and u with id(low(v)) =
id(low(u)) and id(high(v)) = id(high(u)).

3.4.2.2 Apply

The Apply operation is defined as follows:

[f1〈op〉f2](x1, . . . , xn) = f1(x1, . . . , xn)〈op〉f2(x1, . . . , xn)

The operator op is applied pointwise to the functions f1 and f2 and the set of input variables
x1, . . . , xn .

The Apply operation is implemented through a modification of the Shannon expansion.

f1〈op〉f2 = xi · (f1|xi=0〈op〉f2|xi=0) + xi · (f1|xi=1〈op〉f2|xi=1)

In order to apply the operator to the two graphs rooted at v1 and v2 we must consider the
following cases.

• v1 and v2 are both terminal vertices. Then the result is a terminal vertex having the
value value(v1)〈op〉value(v2).

• v1 and v2 are non terminal vertices with index(v1) = index(v2) = i. Then we create a
new vertex with u with index i. This is followed by applying the procedure recursively
to the subgraphs rooted by low(v1) and low(v2) to create a new subgraph with the root
low(u). a new subgraph high(u) is created similarly.

• v1 is a non terminal vertex with index(v1) but v2 is either a terminal vertex or index(v2) >
i . The function f2 corresponding to the graph rooted by v2 is independent of xi:

f2|xi=0 = f2|xi=1 = f2

We therefore create a vertex u having index i then apply the algorithm to low(v1) and
v2 to create a subgraph who’s root is low(u). We then apply a similar approach to get
a subgraph for high(u).

• A similar approach is applied if the previous case is reversed.



3.4 Binary Decision Diagrams 41

3.4.2.3 Restriction

The procedure for Restriction applied to the variable xi is fairly trivial. One replaces
every vertex v with index(v) = i with either low(v) or high(v) corresponding to the value of
restriction.

3.4.2.4 Satisfy

These procedures are based on depth first traversal.

Satisfy-one This procedure returns false if there are no satisfying assignments, or true and
an array containing the satisfying sequence which is satisfiable.

Satisfy-all The procedure is similar to satisfy one except it performs an exhaustive search
and produces all of the satisfying sequences.

Satisfy-count This performs Satisfy-all and then counts the number of satisfying sequences
returned by the procedure.

Conclusion

We have seen a selection of the techniques used by SCADE suite to perform verification.
This began with looking into ways of encoding a model checking problem into propositional
logic, approaches to do this included induction over time and bounded model checking. We
then discussed in some detail two of the approaches used by the SCADE suite to decided the
validity of propositional statements. Now that we have covered the theoretical background
we are in a position to discuss the practical application of the SCADE suite to a verification
problem.



42 Chapter 3 Model Checking



Chapter 4

Verification of Ladder Logic
Programs in SCADE

In the following we present an approach which allows the verification of ladder logic programs
using the SCADE Suite. There have been several cases studies into the verification of safety
critical embedded systems using the SCADE Suite . However the formalisation and verification
of ladder logic programs has yet to be performed. Reliability analysis and verification has
been performed on several industrial systems in [ADS+06] using techniques such as failure
modes and effect analysis and fault tree analysis. In a much larger case study an avionics
sensor voter has also been verified in SCADE [DBCB04]. It is clearly known that SCADE can
verify large safety critical systems. The question we set out to answer is: can SCADE verify
ladder logic programs?

We begin by discussing a method to capture the semantics of a ladder logic program using
labelled transition systems. Previously an attempt was made by James [Jam10] to capture
the semantics of a ladder logic program using an autonmaton. The advantages of our method
are presented and discussed along side a comparison between the two methods. We then
present a solution to the problem of how to translate ladder logic into the SCADE language,
a dialect of Lustre. The problem of translating ladder logic into formal language was first
studied in detail by Kanso [Kan08] and later extended by James [Jam10]. This work led
to a tool which automatically translated ladder logic into the TPTP specification language.
We built a modification of this tool to automatically translate ladder logic programs into
the SCADE language before verifying them using the SCADE suite. We successfully apply
this approach to a toy example before scaling it up to two real world railway interlockings.
We then discuss techniques to add invariants to models using the SCADE suite, solving the
problem of under-specification. Finally a comparison is performed between SCADE , the tool
produced by James [Jam10] and the safety property verifier KIND. In the process we discuss
one approach employed by KIND to verify Lustre programs.

43



44 Chapter 4 Verification of Ladder Logic Programs in SCADE

4.1 Pelican Crossing

In the previous MRes projects by Kanso and James [Kan08, Jam10] that were centred around
the verification of ladder logic programs Kanso presented a running example ladder logic
program for a pelican crossing which was adopted by James. Pelican crossings are a common
feature of road traffic networks in the UK and variations of these crossings exist throughout
the world. Each crossing is a simple computer system that controls four sets of lights which
in turn control the flow of cars and allow pedestrians a safe means to cross a road. We will
now discuss the composition of a pelican crossing. In the example we will follow the naming
convention used by James [Jam10] for the boolean variables representing the pelican crossing.

External Features of the Pelican Crossing

This is a description of how the pelican crossing is composed from an external view point. If
one was a pedestrian and operated the crossing these are the features that would be noticeable.

Traffic Lights A pelican crossing has two traffic lights that control the flow of traffic in
either direction. Each traffic light has a red and a green aspect indicating whether the
flow of traffic should stop in the case of the former and that the traffic flow is clear to
pass the crossing in the case of the latter. It is normally the case that one aspect is
always shown, showing both aspects or no aspects would cause confusion as to whether
the flow should stop or proceed. We will use 4 boolean variables to represent the lights,
the names of these variables come from the possible combinations of two prefixes “pla”
and “plb” representing the two traffic lights and two suffixes , “g” and “r” representing
the possible aspects show on each light. This gives us a unique variable name for each
aspect on each light.

Pedestrian Lights A pelican crossing also has two pedestrian lights that controls the flow
of pedestrians across the road. These are positioned on either side of the road and
face the opposing side of the road. As with the traffic lights these lights also have two
aspects, a red aspect indicates that it is not safe for pedestrians to cross the road and
a green aspect indicates that it should be safe for pedestrians to cross the road. Again
as with the traffic lights it is normally the case that one aspect is always shown.

Audio As well as the disable aspects the pedestrian crossing also has an audio aspect to
indicate to pedestrians whether or not it is safe to cross the road.

Pedestrian Buttons There are two pedestrian buttons on either side of the road that allow
pedestrians to make a request to cross.

Internal Features of the Pelican Crossing

Our Pelican crossing has two internal variables “required” and “crossing” these allow us to
model some internal states of the machine but where as the state of a light might be visible
to a user these are not.



4.2 Modelling Ladder Logic 45

Crossing We require an internal variable that represents that a person is crossing the road.
In the work by James a Boolean variable “crossing” is used we will follow that example
and also use a Boolean variable with that name to represent this property.

Required We also require an internal variable that represents whether one of the pedestrian
buttons has been pressed in a previous iteration of the program and there is a request
to cross. Again we will follow the work by James and use a boolean variable “req” to
represent this.

Ladder Logic Program for the Pelican Crossing

One possible formalisation for the above description of a pelican crossing in Ladder logic can
be seen in Figure 4.1. Other formalisations are possible however we are will be following the
work of James [Jam10] and use the same formalisation but with a slight modification. We
have removed the coil representing the “audio” variable as this is simply a repetition of “plag”
and “plbg”.

Possible Formalisation in Propositional Logic

The above formalisation of the pelican crossing has an equivalent representation in proposi-
tional logic. This can be see in Figure 4.1.

Now that we have looked at representing a system using both ladder logic and propositional
logic we will move on modelling ladder logic programs using propositional logic formulae.

4.2 Modelling Ladder Logic

The Westrace railway interlockings produced by Invensys Rail are programmed using ladder
logic. Ladder logic is part of an international standard programming logic controllers IEC
61131 (see [61103]). Every ladder logic program has an equivalent representation in a subset
of propositional logic that is called the ladder logic formulae. A translation from ladder logic
into propositional logic was first performed by Kanso [Kan08]. Here we will restate a definition
for these formulae is presented in the work by James [Jam10]. Given a propositional formula
φ we define a function vars(φ) to return the set of propositional variables contained within
φ. New variables are creating by applying a “prime” to current ones. We denote this set of
new variables created from an old set of variables V with V ′ = {v′|v ∈ V }. We now need to
define the sets of variables from which our ladder logic programs are formed. A ladder logic
program is constructed in terms of a finite set of input variables I and a finite set of output
variables C, with the property that I ∩ C = ∅.

Definition 26 (Ladder Logic Formulae). A ladder logic formula ψ is a propositional formula
composed from a set of input variables I and a set of output variables C that satisfies the
following conditions:

ψ ≡ ((c′1 ↔ ψ1) ∧ (c′2 ↔ ψ2) ∧ . . . ∧ (c′n ↔ ψn)



46 Chapter 4 Verification of Ladder Logic Programs in SCADE

req crossing crossing

pressed req req

pressed crossing tlag

req

pressed crossing tlbg

req

crossing tlar

crossing tlbr

crossing plag

crossing plbg

crossing plar

crossing plbr

Figure 4.1: The Ladder Logic Program for the Pelican Crossing Example

For some n ≥ 0 where each ψi with 1 ≤ i ≤ n is a propositional formula which has the
following form.

• ∀i.1 ≤ i ≤ n : c′i ∈ C ′

• ∀i, j.1 ≤ i, j ≤ n : i 6= j → c′i 6= c′j

• ∀1 ≤ i ≤ n : vars(ψi) ⊆ I ∪ {c′1, . . . , c′i−1} ∪ {ci, . . . , cn}



4.2 Modelling Ladder Logic 47

[crossing′ ↔ (req ∧ ¬crossing,
req′ ↔ (pressed ∧ ¬req),
tlag′ ↔ ((¬crossing′) ∧ (¬pressed ∨ req′)),
tlbg′ ↔ ((¬crossing′) ∧ (¬pressed ∨ req′)),
tlar′ ↔ crossing′,

tlbr′ ↔ crossing′,

plag′ ↔ crossing′,

plbg′ ↔ crossing′,

tlag′ ↔ (¬crossing′),
tlag′ ↔ (¬crossing′),
tlar′ ↔ crossing′, ]

Figure 4.2: A possible formalisation of the pelican from [Jam10]

4.2.1 Representing a Ladder Logic Program as a Labelled Transition Sys-
tem

Using the above definition we will now provide a new method for the semantic modelling
of ladder logic programs using labelled transition systems. We define two sets of valulations
representing the values of the input variables and the output variabes. We then use a function
which captures the semantics of a ladder logic program to compute a new set of valuations
for the output variables from the current valuations for the input and output variables.It
uses a function which This differs from the approach presented by James [Jam10] where the
semantics of ladder logic programs was modelled using an automaton and paired valuations.

We begin our definition by defining a set containing valuations for each of the input variables
and a similar set for the output variables. We refer to these two sets as being our environments.

ENVI = {µI |µI : I → {0, 1}}
= {0, 1}I

ENVC = {µC |µC : C → {0, 1}}
= {0, 1}C

We represent the semantics of our ladder logic program as a function [Ψ] which takes the two
current environments and returns a new environment for output variables representing a new
state.



48 Chapter 4 Verification of Ladder Logic Programs in SCADE

[ψ] : ENVI × ENVC → ENVC

[ψ](µI , µC) = µ′C

Then each state variable ci is calculated in order using the corresponding i’th rung of the
ladder ψi where 1 ≤ i ≤ n. The calculation makes use of the current valuations of environment
variables µc, µI and the new valuations of output variables restricted to those evaluated before
the current variable µ′C � {c1, . . . , cn} . It could also be the case that there are certain output
variables that remain constant and do not get affected by the execution of the ladder. Such
a variable remains constant if it does not have a corresponding ladder logic rung.

µ′C(ci) = [ψi](µI , µC , µ
′
C � {c1, . . . , ci−1})

µ′C(c) = µC(c) if c /∈ {c1, . . . , cn}

Next we make use of the above to form a labelled transition system representing the ladder
logic program.

Definition 27 (Labelled Transition System). A labelled transition system M is defined to be
a four tuple (S, T, S0, R), where

• S is a finite set of states.

• T is a finite set of transition labels.

• S0 ⊆ S is the set of initial states.

• R ⊆ S × T × S is a labelled transition relation .

We will now use the above definition to define a labelled transition system for ladder logic.
This will give us representation of a ladder logic program which we can apply model checking
to.

Definition 28 (Ladder Logic Labelled Transition System). We define a labelled transition
system M for a ladder logic formula ψ to be a four tuple (S, T, S0, R) which satisfies the
following.

• S = ENVC

• T = ENVI

• µC
µI−→ µ′C if [ψ](µI , µC) = µ′C

• S0 = Init(ENVC) where Init returns µC where all variables are set to false except those
variables representing red lights

We now want to be able to speak about the properties of the system that ensure safety. As
we have seen in section three these properties are called safety conditions. An example of
a safety condition for our pelican crossing example would be “Traffic lights and pedestrian
lights are not green at the same time”



4.2 Modelling Ladder Logic 49

SafeLights ≡ (tlag ∧ tlbg ∧ ¬plag ∧ ¬plbg) ∨ (¬tlag ∧ ¬tlbg ∧ plag ∧ plbg)

Following the work of James we will define a safety condition for a ladder logic program
as follows. The following definition is motivated by the fact that safety conditions tend to
describe properties which hold for two consecutive cycles of the ladder logic program.

Definition 29 (Safety Conditions for a Ladder Logic Program). Given a ladder logic formula
ψ over the variables in I ∪C a safety condition is a propositional formula formed from the
variables in I ∪ C ∪ C ′

Now that we have defined the model of our system and the type of properties we want to be
able to speak about in that model, we must answer the following question. Given a model of
our system and a safety condition, how do we check that the safety condition holds in that
model?

Definition 30 (The Verification Problem for Ladder Logic Programs). We define the verifi-
cation problem for a ladder logic formula ψ for a safety condition φ

LTS(ψ) |= φ

iff µC , µI , µ
′
C |= φ for all reachable pairs of states µC , µ′C with transition condition µI in

LTS(ψ).

Modelling ladder logic programs using this method rather than the approach used by James
[Jam10] has two advantages. The first is that due to the removal of the input variables from
the set of state variables we have reduced the state space. The second is that we have managed
to simplify the definition removing some of the redundancy found in that method.

Figure 4.31 shows the labelled for the pelican crossing example. This four state labelled
transition system is simpler than the six state automaton2 found in [Jam10]. There is one
unreachable state in which both “crossing” and “req” are true.

Remark 2. A different method for calculating the initial states was used in [Jam10]. The set
is calculated by setting all input variables to false and performing one transition from every
state. The states reached after one transition are the initial states. This method could be
formulated as follows using our approach:

S0 = {µ′C ∈ ENVc|∃µC ∈ ENVC , µC
FalseI−−−−→ µ′C}

Where

FalseI = {µI |µI : I → {0}}

Using this approach would give the example labelled transition system seen in Figure 4.3 two
initial states rather than one.

1The transition labelled 0,1 is in fact two transitions, one labelled with 1 and the other labelled with 0.
2James’s automaton has eight states if unreachable states are included.



50 Chapter 4 Verification of Ladder Logic Programs in SCADE

4.2.2 Formalisation of the Pelican Crossing Example

We will now present one possible formalisations of the pelican crossing example in the SCADE

language. Other formalisations are possible and are presented in a later section of this thesis.
We will then proceed to proving that two safety conditions hold in these representations of
the ladder logic program.

In the following formalisation the boolean flows representing the red lights are initialised to
true, all other flows are initialised to false. This is the initialisation used by Invensys in
the Westrace railway interlockings. All successive values of the flows are dependent on the
initial state and the value of pressed. The input of the node3 is a boolean flow pressed that
represents whether or not the button has been pressed. The output of the node are the
results of each of the ladder logic rungs computed by the ladder logic program. The ladder
logic program itself is contained in the declaration of the node. The initial state is specified
by using the -> operator. In order to express the dependency of the value of flows in the
current state on flows in the previous state the pre operator is used.

node PelicanLadderLogic1(pressed: bool)

returns (req, crossing, tlag, tlar, tlbg, tlbr, plag,

plar, plbg, plbr, audio: bool)

let

crossing = false -> pre req and (not (pre crossing));

req = false -> (not pre req) and pressed;

tlag = false -> ((not pressed) or req) and (not crossing);

tlbg = false -> ((not pressed) or req) and (not crossing);

tlar = true -> crossing;

tlbr = true -> crossing;

plag = false -> crossing;

plbg = false -> crossing;

plar = true -> not crossing;

plbr = true -> not crossing;

audio = false -> crossing;

tel

As already pointed out in 4.2.1 Remark 2 this formalisation differs from the one presented
[Jam10] in the initial states. He assumes that the internal state of the system is unknown
initially. Instead of setting all the internal variables he sets the inputs to false and checks
what states are reachable in one transition from every possible state of the internal variables.
This approach has the advantage that the system is proven safe from starting from every
possible internal state. However since this is not used in industry some of the initial states
are redundant.

3A node is the SCADE equivalent of a procedure or function.



4.3 Verification of Ladder Logic 51

Crossing = 0
Req = 0

...

Crossing = 1
Req = 0

...

Crossing = 0
Req = 1

...

Crossing = 1
Req = 1

...

0

0, 1

1

0

1

0,
1

Figure 4.3: Pelican Crossing Transition System

4.3 Verification of Ladder Logic

We will now move on to the discussion of the verification of ladder logic programs. This
mainly revolves around the verification of ladder logic programs using the SCADE suite. To
begin this process another node was declared to model check Pelican Crossing 1. Like the
ladder logic programs under test this node contains one boolean input flow namely pressed.
It contains two extra outputs representing the two safety conditions being tested on each
of the ladder logic programs. The body of the node contains an instantiation of the ladder
logic with pressed as input. Each of the output flows have exactly the same name as they do
in the ladder logic program. The safety conditions are then constructed by composing the
output flows of the ladder logic program with logical connectives in order to express certain



52 Chapter 4 Verification of Ladder Logic Programs in SCADE

properties. We modified the safety conditions so that they were not tested in the initial state
which allowed the ladder logic program to stabilise into a safe state. This was done by using
the temporal operator -> to initialise the flow representing the safety condition to true. The
flow then becomes the value of the safety condition in successive states.

safelights The safelights safety condition ensures that it is never the case that either of the
traffic lights has a red aspect or a green aspect showing at the same time.

¬(tlar ∧ tlag) ∧ (tlar ∨ tlag) ∧ ¬(tlbr ∧ tlbg) ∧ (tlbr ∨ tlbg)

safecross The safecross condition ensures that it is never the case that crossing is true and
that the green lights are showing.

(crossing ∧ tlar ∧ tlbr) ∨ (¬crossing ∧ tlag ∧ tlbg)

node PelicanSafetyCond1(pressed: bool)

returns (safelights, safecross, req, crossing, tlag,

tlar, tlbg, tlbr, plag, plar, plbg, plbr, audio : bool)

let

req, crossing, tlag, tlar, tlbg, tlbr, plag, plar, plbg, plbr, audio =

PelicanLadderLogic1(pressed);

safelights = (tlar xor tlag) and (tlbr xor tlbg) ;

safecross = (crossing and tlar and tlbr) or (not crossing and tlag and

tlbg)

tel

The safety conditions “safelights” and “safecross” are both true in the initial state for our
formalisation of the pelican crossing and therefore do not need to be initialised themselves.

4.4 Alternative Modelling Approaches

We will now present two alternative approaches that were considered to model the pelican
crossing. The second formalisation is the same in all aspects as the first except, that the
starting state of the ladder logic program is different. In this formalisation all of the flows
are initialised with the value false. After the initial state the flows are formalised as before.

crossing = false -> pre req and (not (pre crossing));

req = false -> (not pre req) and pressed;

tlag = false -> ((not pressed) or req) and (not crossing);



4.4 Alternative Modelling Approaches 53

tlbg = false -> ((not pressed) or req) and (not crossing);

tlar = false -> crossing;

tlbr = false -> crossing;

plag = false -> crossing;

plbg = false -> crossing;

plar = false -> not crossing;

plbr = false -> not crossing;

audio = false -> crossing;

A slight modification was made to this node in order to verify the correctness of the second
formalisation of the pelican crossing. We added a temporal operator to the flow containing
the safety condition so that the safety condition was tested after the initial state. This gives
the flows a chance to stabilise into a safe state.

safelights = true -> (tlar xor tlag) and (tlbr xor tlbg);

safecross = true -> (crossing and tlar and tlbr) or

(not crossing and tlag and tlbg);

The third formalisation of our ladder logic program is the most similar to the work by James
[Jam10]. The difference is that instead of initialising “crossing” and “req” with a truth
value, they are initialised using an initialisation vector. This allows us to check different
initialisations of the “crossing” and “req” variables using SCADE ’s model checker without
manual input. Some of these states are unreachable and therefore need to be eliminated
using assumptions on the initialisation vectors. These input flows are declared as the boolean
inputs “crossingi” and “reqi” in the nodes interface.

node PelicanLadderLogic3(pressed, crossingi, reqi, tlagi, tlari, tlbgi, tlbri,

plagi, plari, plbgi, plbri, audioi: bool)

returns (req, crossing, tlag, tlar, tlbg, tlbr, plag, plar, plbg, plbr, audio: bool)

let

crossing = crossingi -> pre req and (not (pre crossing));

req = reqi -> (not pre req) and pressed;

tlag = tlagi -> ((not pressed) or req) and (not crossing);

tlbg = tlbgi -> ((not pressed) or req) and (not crossing);

tlar = tlari -> crossing;

tlbr = tlbri -> crossing;

plag = plagi -> crossing;

plbg = plbgi -> crossing;

plar = plari -> not crossing;

plbr = plbri -> not crossing;

audio = audioi -> crossing;

tel



54 Chapter 4 Verification of Ladder Logic Programs in SCADE

Verification of Pelican Crossing 3

A modification to the code for the original safety condition node is required in order to apply
model checking to the third possible formalisation. It was necessary to add extra inputs to
cope with the initialisation flows in the ladder logic program. We also added an assumption
about these inputs to prevent the ladder logic program being initialised in a state that would
be unreachable in an implementation.

node PelicanSafetyCond3(pressed, crossingi, reqi, tlagi,

tlari, tlbgi, tlbri, plagi, plari, plbgi,

plbri, audioi: bool)

returns (safelights, safecross, req, crossing, tlag, tlar,

tlbg, tlbr, plag, plar, plbg, plbr, audio : bool)

let

assume reqxorcross: reqi xor crossingi;

req, crossing, tlag, tlar, tlbg, tlbr, plag, plar, plbg, plbr, audio =

PelicanLadderLogic3(pressed, crossingi, reqi, tlagi,

tlari, tlbgi, tlbri, plagi, plari,

plbgi, plbri, audioi);

safelights = (tlar xor tlag) and (tlbr xor tlbg) ;

safecross = (crossing and tlar and tlbr) or ((not crossing) and tlag and tlbg);

tel

4.4.1 Generating Counter Examples - Incorrect Pelican Crossing

In the following we demonstrate how counter examples are produced in SCADE and show
a typical counter example trace. We have formalised an incorrect pelican crossing in ladder
logic. It is a slight modification of our first correct pelican crossing that we formalised. It
varies on the third and fourth lines which model the green aspect of the traffic lights. The
not pressed or req has been replaced with not pressed in both cases.

crossing = false -> pre req and (not (pre crossing));

req = false-> (not pre req) and pressed;

tlag = false -> ((not pressed)) and (not crossing);

tlbg = false -> ((not pressed)) and (not crossing);

tlar = true -> crossing;

tlbr = true -> crossing;

plag = false -> crossing;

plbg = false -> crossing;



4.5 Verification of two Real World Interlockings 55

plar = true -> not crossing;

plbr = true -> not crossing;

audio = false -> crossing;

We then attempted to verify this example using the two safety conditions verified for the
correct pelican crossing. SCADE correctly managed to falsify both of the safety conditions and
the same counter example trace was produced (See Figure 4.4). Counter examples show how
the state of the system evolves and leads to the violation of the safety condition. Typically
they show how the input, output and internal variables change over time. The incorrect
pelican crossing enters an unsafe state where none of the traffic lights are shown. Such
counter example traces are useful to the engineers at Invensys Rail. They are essential to
understand the nature and cause of the violation.

Var 1 2

IncorrectPelican

Inputs

pressed FALSE TRUE

Outputs

req FALSE TRUE

crossing FALSE FALSE

tlag FALSE FALSE

tlar TRUE FALSE

tlbg FALSE FALSE

tlbr TRUE FALSE

plag FALSE FALSE

plar TRUE TRUE

plbg FALSE FALSE

plbr TRUE TRUE

audio FALSE FALSE

safecross TRUE FALSE

Figure 4.4: Counter example trace for safecross

4.5 Verification of two Real World Interlockings

Due to the size of real life ladder logic programs manual translation is not feasible due to
time and the likelihood of human error. Therefore we created a tool written in Haskell that
automatically translates ladder logic programs into SCADE . Our tool is a modification of a
tool created by James. Using a modified version of the tool presented by James [Jam10] it
was possible to automatically translate ladder logic programs into the SCADE language.

Ladder logic
Translated

=⇒
by tool

Scade language

The tool translated the ladder logic program without encoding any of the safety conditions.



56 Chapter 4 Verification of Ladder Logic Programs in SCADE

It was necessary to hand code each of the safety conditions into the SCADE model so that
we could verify them using the model checker.

4.5.1 Adding Invariants

There are certain states in the ladder logic program that are not reachable through any
possible execution of the program. This discussion is based on results produced in [Kan08].
Definition 31 (Invariant). An invariant is a formula ψ which holds for all reachable states
of the ladder and is constructed only using atomic propositions contained within that ladder.

If our model does not capture the invariants of a logical system then it is possible that so
called false negatives are produced in the verification process. A safety condition could be
violated by one of the unreachable states and a counter example produced. The execution
that leads to this unsafe state would never happen in reality therefore the system could still
be considered safe. To be certain however we would need to better understand the system
and include the invariant in our model.

Physical Invariants

One of the disadvantages of the ladder logic formalisation it is under-specified and does
not take into account some of the constraints caused by the physical environment. These
constraints are called physical invariants. For example consider a three way switch (Figure
4.5) which has three positions (A,B,C) in which contact can be made and a circuit formed. It
is only physically possible for the switch to close one of the contacts at a time. A ladder logic
formalisation of the switch does not take this into account. Following the Invensys approach
the switch would be formalised as three booleans, one for each of the contacts. No information
would be encoded in the program to enforce that only one of the booleans can be true at any
given time. Such invariants require a detailed analysis as their inclusion in the model could
remove some redundancy. In this case it could be possible that a paper clip (short circuit)
occurs and all three contacts become closed. The safest option could therefore be to model a
switch using the Invensys approach as it includes the possibility of this fault. We describe a
method to do this in the next paragraph.

AB

C

Figure 4.5: A Three-Way Switch



4.5 Verification of two Real World Interlockings 57

Design-By-Contract Approach

The SCADE suite makes use of the design-by-contract approach [Est09]. This was first intro-
duced for the object-orientated language Effiel in work by Meyer [Mey92]. The motivation
behind design-by-contract was to provide a new methodology which would improve the re-
liability of software. The general idea behind it is that you provide a contract specifying
the behaviour of a node. A contract consists of preconditions that are required for a cor-
rect execution of the code along with postconditions that will be met if the code is executed
correctly.

• The assume observer allows us to provide preconditions that speak about the value of
inputs and the past value of outputs.

• The guarantee allows us to provide postconditions that speak about the value of inputs
and outputs.

An invariant can be formalised for the three way switch Figure 4.5 in the SCADE lan-
guage. Using the assume contact observer we add an invariants of the form switch posA →
(¬switch posB ∧ ¬switch posC) for each of the positions.

assume switchInVar1 : not switch_posA or

(not switch_posB and not switch_posC);

assume switchInVar2 : not switch_posB or

(not switch_posA and not switch_posC);

assume switchInVar3 : not switch_posC or

(not switch_posA or switch_posB);

We have used this approach combined with the work of Kanso [Kan08] to successfully add
approximately one hundred invariants to one of the real world railway interlockings. These
invariants however did not eliminate all of the false negatives produced in the verification
process. Further work would have to be performed in co-operation with Invensys Rail to
isolate the remaining invariants.

4.5.2 Results

Using the approach described above we have managed to successfully translate two real world
railway interlockings into the SCADE language. We are not allowed to give the details of the
real world example as it would break a confidentiality agreement To give an impression of the
size of the programs they contained approximately six hundred variables and three hundred
and fifty rungs each. Safety conditions were encoded for each of the railway interlockings into
the SCADE language and verification was performed upon them.

• Railway Interlocking A: No invariants added , two safety conditions verified

• Railway Interlocking B: Approximately one hundred invariants added, approximately
one hundred safety conditions verified of which approximately 40% produced false
counter examples.



58 Chapter 4 Verification of Ladder Logic Programs in SCADE

Typically the time it took to verify a safety condition was less than a second. There were a
few exceptions to this where the verification process took ten seconds or more. This shows
the use of SCADE for the verification of railway interlockings is viable.

The large amount of false counter examples produced during the verification process is due to
the underspecification of the ladder logic program. We have contacted Invensys Rail regarding
the false counter examples however we have yet to receive a response from them. The removal
of the false counter examples and completion of the SCADE formalisation could be the topic
of future work in this area.

4.6 A Comparison of Different Model Checkers

In order to test the performance of SCADE we perform a comparison between SCADE and
other model checkers. This will give us empirical results indicating whether SCADE out-
performs or under-performs compared with its competition i.e. KIND and the tool produced
by James [Jam10].

4.6.1 Tool By James

We have mentioned several times already during this thesis that this work is based on that
of James [Jam10]. Therefore it is natural for us to compare our approach to the one used by
James. James created a proto-typical tool for the verification of ladder logic programs based
upon earlier work by Kanso [Kan08]. Underlying the tool is the Paradox model finder [CS03]
and the SAT-solver MiniSat [EN04, Min]. It allows for the application of the following model
checking techniques:

• Inductive Verification

• Bounded Model Checking

• Temporal Induction

One of the aims of this approach was to increase the efficiency of the model checking process
through the use of program slicing. This technique removes formulas from the model of the
ladder logic program which do not affect the safety condition. This leaves only the formulas
upon which the safety condition depends. The sliced ladder is typically 25% of the size on
the original. This allowed up to ten times as many states to be checked using bounded model
checking and a considerable performance increase.

4.6.2 The Kind Model Checker

The KIND safety property verifier [Hag08, HT08] for Lustre was used to provide a comparison
between the SAT-based model checkers that have been applied to this problem so far an SMT-
based model checker. KIND could be seen as one of the SCADE suites academic competitors
and therefore a comparison would give us an insight in the capabilities of SCADE . KIND allows
for different SMT-solvers to plugged in. In this case we have chosen to use the SMT-solver



4.6 A Comparison of Different Model Checkers 59

Yices [DDM06] which has been shown to perform well in industrial applications [JES07].
KIND reasons about an idealised version of Lustre programs in which machine integers and
floating point numbers are replaced with unbounded integers and infinite precision rationals
respectively. These idealised programs are then modelled using a typed first-order logic that
includes uninterpreted function symbols along with built-in integers and rationals. This logic
is called Idealised Lustre Logic which we shall denote using IL. There is a particular
advantage of using IL that makes it attractive to use for model checking purposes. That
is the problem of checking the validity of its quantifier-free formulas that contain linear
numerical terms is decidable in such a way that particularly suited to SMT techniques.

Idealised Lustre Logic

One way of formalising Lustre into IL is presented in [Hag08, HT08]. To translate from
Lustre programs to IL we represent each stream x of values of type τ using an uninterpreted
function of type N → τ . An equation consisting of multiple streams can be translated into
universally quantified equations which speak about the values of streams. For example the
stream x = y * z would be translated into ∀n : N.x(n) = y(n) ∗ z(n). In this case the
integer streams x, y and z have been translated into function symbols of type N → τ . The
initialisation operator→ is translated using the ite operator. For example consider the stream
x = y ∗ z → y ∗ z − pre x this would be translated into the following ∀n : N.x(n) = ite(n =
0, y(0) ∗ z(0), y(n) ∗ z(n)− x(n− 1)).

This approach can be expanded to a (idealised) Lustre program consisting of a single node N
as follows. Our Lustre program consists of stream variables x = 〈x1, . . . , xp, y1, . . . , yq〉 these
are comprised of input variables x1, . . . , xp and local and output variables y1, . . . , yq. We can
express the semantics of N using IL by applying universal quantification to a variable n over
the following system of equations.

∆(n) =


y1(n) = t1[x(n),x(n− 1), . . . ,x(n− d)]

...

yq(n) = tq[x(n),x(n− 1), . . . ,x(n− d)]

For yi as translation is performed ti on its defining express in N . We define a state for N to
be any of the tuples of values for x(n) that are well-typed. Each of the yi(n) is a function of
the previous states at time n, n − 1, . . . , n − d. The maximum “nesting depth” d represents
the maximum distance into past which the temporal pre operator used to take values from.
In the rest of our discussion of KIND we will consider only the case that d ≤ 1 which is
typical of ladder logic programs. We need to be able to speak about possible executions over
the program. Therefore we need to way of speaking about the inputs a program has received
during its execution. We define a trace of a program N to be a tuple s = 〈s1, . . . , sp+q〉 where
each si with 1 ≤ i ≤ p + q is the same type as x. A path is defined to be a finite sequence
configurations that are produce by a specific trace. A legal trace s is one which satisfies the
formula ∀n : N.∆(n) when the stream variables x are those of s. A reachable configuration is
one that is produced in a legal trace. If a path is in the initial segment of a legal trace then
that path is said to be initial. We define an Invariant or Safety property P of configurations



60 Chapter 4 Verification of Ladder Logic Programs in SCADE

for a node N if it holds in all reachable configurations. This forms the basis for the formal
verification of invariants for Lustre programs. Typically this model of IL is then lifted and
adapted so that a variety of SAT-based model checking techniques can be applied.

4.6.2.1 Applying k-Induction Using an SMT-Solver

We will now discuss one possibility for the verification of these IL programs following [Hag08,
HT08]. We define k-induction using an equational system ∆(n) which models a node N in
IL. We express a safety property P which speaks about the configurations of N using a
quantifier free formula P (n) formulated in IL using x(n). For a given integer term t in IL
it is possible to replace every occurrence of n in ∆(n) using t. The resulting formula shall be
denoted as ∆t. This replacement can also be performed with P (n) and the resulting formula
is denoted Pt.

We define k-induction using the following two statements, for some k ≥ 0 and constant integer
n, to show that P is a valid safety property or invariant for N .

∆0 ∧∆1 ∧ . . . ∧∆k |=IL P0 ∧ P1 ∧ . . . ∧ Pk (4.1a)

∆n ∧∆n+1 ∧ . . . ∧ Pn ∧ Pn+1 ∧ . . . ∧ Pn+k |=IL Pn+(k+1) (4.1b)

Logical entailment in IL is denoted using |=IL. Verification is performed by passing the two
statements to an SMT-solver with an instantiated with an increasingly large k until one of
the following occurs:

• The base case is proven invalid. In this case P is invalid and a it is possible to extract
a counter example path from the IL-model of ∆0 ∧ . . . ∧∆k ∧ ¬(P0 ∧ . . . ∧ Pk).

• The base case and the induction step are proven valid. This shows that P holds for
reachable configurations and therefore it is an invariant or valid safety property of the
node N .

4.6.3 Results of the Comparison

The one comparison we have performed so far was performed using the valid safety condition
Conflicting Routes Not Permitted on the ladder logic program for a real railway inter-
locking. This is a typical example of the type of safety condition proven and therefore allows
us to test the performance of the tools. It can be represented by the following formula in
propositional logic.

¬8252.RU ∨ ¬8253(2).RU

In the Figure 4.6 we see the results of our comparison between the three tools. We see that on
this safety condition the results show SCADE is comparable to the other two model checkers
when some form of induction is applied.



4.6 A Comparison of Different Model Checkers 61

A further comparison could be performed that pushes the capabilities of the all of the tools.
Using some of the safety conditions that produced results deviating from the norm. However
it has not been possible so far to encode such a safety condition into the model checker of
tool by James.



62 Chapter 4 Verification of Ladder Logic Programs in SCADE

Tool Used Technique Applied Result Time Taken

SCADE Induction Valid 1 second

Tool Used Technique Applied Result Time Taken

Tool by James with program slicing

Induction Valid 0.122 seconds
BMC4 = 1000 Valid 2m 20.1s

BMC = 750 Valid 1m 32.4s
BMC = 500 Valid 0m 54.8s
BMC = 250 Valid 0m 24.1s

Temporal Induction
Base BMC = 10 Valid 0.990s

Induction Valid 4.934 s

Tool Used Technique Applied Result Time Take

KIND

K-induction Valid 0.352 seconds
BMC = 1000 Unknown 389m 53 seconds
BMC = 750 Unknown 222m 27 seconds
BMC = 500 Unknown 49m 45 seconds
BMC = 250 Unknown 6m 5.461 seconds

Figure 4.6: Results of the comparison

4BMC Stands for bounded model checking. Each BMC entry in the table is accompanied by a bound.



Chapter 5

Concrete Modelling of the Railway
Domain

There is a large amount of interest from industry in concretely modelling parts of the railway
domain.

Formalising the model in a language with formal semantics has a major advantage over writing
a specification in natural language. It allows us to apply a variety of verification techniques
which can be used to check the correctness of the model. Some progress has already been
made in creating an approach which allows such a formalisation to be produced. One attempt
used the algebraic specification language RAISE (see [HP99]) to create a highly abstract
algebraic specification of the model. This algebraic specification was then refined and an
implementation was produced. This approach has the advantage that it is possible to verify
that safety properties hold for the abstract model. Since the implementations are refinements
of the abstract model the safety properties also hold in the implementation. Another attempt
has been made using Lustre to model a segment of railway as an asynchronous distributed
system (see [CMSW99]).

5.1 Modelling Components

Despite the fact that the ladder logic method of specifying railway interlockings is fairly
reliable and well used, Invensys Rail are looking to move towards a new approach. They
would like to use higher level languages which allow them to speak about concrete properties
of the railway domain. Using these richer higher level languages would also allow more of the
railway to be captured in the model. This is a step away from a control engineer orientated
approach towards a computer scientist orientated approach. Another aspect of modelling that
industry is interested in is modularity. They would like to capture the behaviour of generic
components giving them a kit from which they can assemble segments of railway. Some of
the verification can be performed at the component level, verifying individual components or
commonly used combinations of components. This reduces the overall amount of verification
that needs to be performed on the resulting railway segment.

63



64 Chapter 5 Concrete Modelling of the Railway Domain

The requirements for the behaviour of the components was not completely specified in one
individual document but rather came from multiple places. Capturing the behaviour of these
components in a document is a task in itself and is beyond the scope of this thesis, however
it may be part of future work. Some information was gathered from more formal documents
such as the control tables and the data model document provided by Invensys Rail. Other
information was taken from documents such as the Introduction to Railway Signalling [KR01].
Our aim here is to provide one insight into how a modelling process could look.

The way we have modelled the track was based on the small example found in the work by
Caspi et al [CMSW99]. In this example a segment of track was modelled as a node in Lustre.
The movement of a train was captured in the node by having inputs and outputs that model
when a train enters or leaves that segment of track. This allowed the topology of a simple
track to be captured by linking the inputs and outputs of several of the track segment nodes.
In our modelling approach we will be looking to extend the idea of capturing the topology. In
[CMSW99], the lights and points were modelled as being part of the track segment. We intend
to capture these components separately making our approach more modular. Unlike the
work [CMSW99] we will not be trying to capture the asynchronous nature of their modelling
approach. The control system employed by Invensys Rail synchronises on a clock. We will
now move on to discussing how the components were modelled in our approach using the
SCADE language.

One of the aims of this approach was to model individual components of the railway in a
modular fashion. We will also use this as an opportunity to examine the use of finite state
machines in SCADE . We will now present the track components we have modelled as part of
this approach along with some motivation as to why they were modelled in the way they are.
The SCADE language code for these track components can be found in the Appendix.

5.1.1 Track Segments

Having a concrete model of track is crucial to our railway modelling. If the track was not
modelled it would be hard to justify that the resulting model was indeed one of the railway.

The first thing we have to consider is; what sort of behaviour do we want from our model?
This should be closely followed by the question: What sort of data should our model contain?

• When do trains enter a segment of track.

• The track should become occupied if a train enters.

• If a track is already occupied and a second train enters, then we would like to know
this. A crash could occur.

• If a track is occupied and there is a adjacent signal showing only a green light, then a
train should leave the track.

Rather than create a new data type for trains we have decided to follow the work by Capsi
[CMSW99] and use boolean data flows to model the movement of trains. Boolean data flows
were also used to indicate whether a signal is shown at the side of the track and whether a
crash has possibly occurred. The behaviour of the track segment was captured by a SCADE

state machine see 5.1. The state machine has 4 possible states (Empty, Occupied, TrainLeave,



5.1 Modelling Components 65

Crash) each with 3 internal variables. The variable TrackOcc keeps track of whether a train
is currently occupying the track. If another train enters this segment of track while it is
occupied then the variable Crash is set to true indicating the possibility of a crash. The third
variable TrainOut indicates that a train is in the process of leaving this track segment and
entering the next.

Empty
TrackOcc = false
TrainOut = false

Crash = false

Occupied
TrackOcc = true
TrainOut = false

Crash = false

TrainLeave
TrackOcc = true
TrainOut = true

Crash = false

Crash
TrackOcc = true
TrainOut = false

Crash = true

Figure 5.1: Scade State Machine For A Track Segment

Connecting Track Segments

We will now present an example demonstrating how to connect two track segments using
our approach. This is performed by instantiating two Track Segment1 nodes each of which
models a straight track segment . Then we feed the output of one of the nodes into the input
of the other.

TRACKOCC_1, TRAINOUT_1 , TRACK1_CR =

Track_Segment1(TRAININ, false, false, true);

TRACKOCC_2, TRAINOUT_2 , TRACK2_CR =

Track_Segment1(TRAINOUT_1, false, false, true);

In this example TRAININ represents that a train has entered the piece of track. vTRAINOUT 1

and vTRAINOUT 2 both represent that a train has left their corresponding segments. The track
segments have 3 inputs which are used to model track side signalling. In this example they
are set to false, false, true which represents that the previous light seen was green and that
trains are free to proceed.

Track -
Segment1

Track -
Segment1

TrainOut 1TrainIn TrainOut 2

Figure 5.2: Connecting track segments to form a one way track



66 Chapter 5 Concrete Modelling of the Railway Domain

5.1.2 Signals

The signals were modelled as two separate components, the signals themsevles and the aspects
they contain. First a light aspect was modelled separately of the signals, then multiple light
aspects were instantiated to model the different types of signal.

3 different types of Signals have been modelled so far using this approach1.

• 3 Aspect Signal: (Green, White, Red)

• 2 Aspect Signal : (Green, Red)

• Single Aspect Signal: (Fixed Red)

The railway data model provided by our industrial partner Invensys Rail contained some
information regarding the formalisation of signals and signal aspects. It specified that a
signal aspect should have 3 boolean fields (Available, Driven and Reported) and that a signal
can be made up of any number of signal aspects. The boolean fields are described in the
following:

Available This is true is the aspect is available to be set , false otherwise

Driven If this is true then the aspect is currently active and being displayed, otherwise it is
false

Reported The signal is faulty and has been reported to the control system

This document did not specify any concrete behaviour however. Therefore we had to use
some intuition and when formalising the behaviour of the signals. Both the signal aspect and
the signals were modelled using the SCADE ’s built in state machines.

The Signal aspect was modelled as having 3 boolean inputs representing it is being set Avail-
able, Driven and Reported. It also has 3 outputs for Available, Driven and Reported that
are used to represent the internal state of the aspect. Every possible combination of outputs
is allowed giving the aspect 8 internal states. The value of Available influences whether or
not a signal aspect can be driven. If the aspect is available then the value of driven can be
changed if it is not available then the value of driven becomes locked. The value of reported
can be changed at any time, its behaviour was not implemented at the current time. It was
intended to model that the light has become broken and has been reported to the control
system.

Modelling the availability of a signal aspect in this way means that the complexity of the
node modelling this signal increases in order to incorporate the slight delay in changing the
state of a signal aspect. We also considered signal needs to be modelled in such a way that
we do not enter a state where two lights or no lights are showing. If there was for instance
a cut in the control cable to the signal then it should enter a safe state where a red light is
showing.

The two and three aspect lights were modelled as having a boolean input for each of the
aspects that could be driven. The outputs consist of 3 booleans representing whether or not

1One extra type of light that could be modelled in the future is a 4 aspect light (Green, White, White,
Red) however since this is only used on high speed lines we have chosen not to model this at the current time



5.1 Modelling Components 67

each of the signal aspects has been driven and a further boolean representing whether or
not the signal is set. The signal is set if the lights are not in the process of changing and
signal show is being driven by the inputs. Internal variables are used to store the value of the
outputs from the previous cycle.

Every signal we have modelled initialises with the red aspect set as this is the failsafe state. In
order for the aspect showing on the light to change it has to go through several intermediate
stages. These intermediate states ensure that the signal has at least one signal driven and
only one signal driven. The variable changes are described in the diagram 5.3.

Transition
State

R A = True
R D = False
G A = True
G D = True
L S = False

Set
Available

R A = True
R D = True
G A = True
G D = False
L S = False

Start
R A = True
R D = True
G A = False
G D = False
L S = True

Lights Set
R A = False
R D = False
G A = True
G D = True
L S = True

Figure 5.3: The Transition Between Signal Aspects

The following is a description of the variables in 5.3

R A Controls the availability of the red aspect

R D Drives the red aspect

G A Controls the availability of the green aspect

G D Drives the green aspect

L S Indicates that the lights are set

Connecting a Track Segment With a Signal

We will now present an example demonstrating how to connect a track segment with a 3
aspect signal using our approach. This is performed by instantiating two SCADE nodes one
of which models a track segment the other models a 3 aspect signal. The relationship between
the two components is modelled by passing the output of the lights into the input of the track
segment.

LIGHTS_SET , SHOWS_RED , SHOWS_WHITE, SHOWS_GREEN =

Light3Aspect(DRIVE_RED , DRIVE_WHITE, DRIVE_GREEN);

TRACKOCC_1 , TRAINOUT_1 , TRACK1_CR =

Track_Segment1( TRAININ, SHOWS_RED, SHOWS_WHITE, SHOWS_GREEN );

In this example SHOWS RED, SHOWS WHITE and SHOWS GREEN represent that the signal is dis-
playing the aspect which corresponds to the variable . The variables DRIVE RED, DRIVE WHITE



68 Chapter 5 Concrete Modelling of the Railway Domain

and DRIVE GREEN represent a electronic signal from the control system driving the signal to
display the corresponding aspect.

Track -
Segment1

3 Aspect
Signal

Configuration

AspectShown

Figure 5.4: Connecting a track segment with a signal

5.1.3 Points

A point does not have any formal specification in the form of a document so we once again
direct the reader to our book on railway signalling [KR01]. It can have two physical positions,
i.e. normal or reverse. The point can also have a locking mechanism activated, locking it in
one of the positions. These physical characteristics give our model a total of 4 states. The
point can be driven by electronic signals to either the normal or reverse position. These two
driving signals for the point are modelled as two separate inputs. This allows us to model the
situation where there has been a communications failure between the point and the control
system. This adds a form of redundancy to our model. If the track becomes occupied by a
train then the point should lock in what ever position it is in until the train has left that
track segment. This behaviour can be seen in the diagram 5.5.

Normal-Locked

Normal-Free

Reverse-Locked

Reverse-Free

¬
O
ccu

p
iedO

cc
u
p
ie
d

¬O
cc
u
p
ie
dO

ccu
p
ied

Reverse ∧ ¬Normal

Normal ∧ ¬Reverse

Figure 5.5: The Transition Between Signal Aspects



5.2 Railway Example 69

5.1.4 Routes

Unlike the other components, the route has a more formal specification in a document called
the control table. The control table lists the routes for a track, what happens when a route
is set and which routes conflict with each other. An example of a typical control table entry
is as follows:

ROUTE No. EXIT ASPECT SIGNAL
AHEAD

TRACKS POINTS
NORMAL

POINTS
REVERSE

508 A 500
Y 500 AT R

VJ VH VG 764 768
G 500 AT Y

508 B-1 498
Y 498 AT R

VJ VH VG 768 764
G 498 AT Y

ROUTE No. This identifies the route and also identifies the signal allowing entry to the
route.

EXIT This identifies the signal at which this route finishes.

ASPECT and SIGNAL AHEAD This links the aspect that is shown on the signal at the
start of the route with the aspect that is shown on the signal at the end of the route.
The first case on this table can be read as follows: A Yellow aspect will show on signal
508 if a Red aspect is shown on signal 500.

TRACKS This indicates which track circuits make up the route. If any of these tracks
become occupied the signal from the track circuits should be fed back into the control
system. This should cause the signal at the start of the route to go red.

Points Normal Points that are set Normal when the route is called.

Points Reverse Points that are set Reverse when the route is called.

Two routes are said to be conflicting if they set the same point in different positions. These
conflicting routes can not be set at the same time. In the example control table above the
two routes conflict on point 764. We have modelled a route as being an entity which sets
the lights and points as mentioned in the control tables. Our model of a route also receives
information indicating whether or not the track segments contained within are occupied.

5.2 Railway Example

Now that we have our components modelled the next task is to combine them together to
form a segment of railway. Our industrial partner provided us with a detailed track plan
for one of the real life interlockings. We used this track plan as a basis for an example to
show how our modelling approach can be applied. Some of this detail was not necessary in
order to explore the modelling capabilities of the SCADE language and would have created
an unnecessary extra workload, so we abstracted away from some details.



70 Chapter 5 Concrete Modelling of the Railway Domain

5.2.1 Modelling a Junction

The following figure 5.6 shows how components are used to construct a junction which can
be seen in the track plan figure 5.7. The nodes themselves are represented in the diagram by
the boxes and the data which flows between them is shown with the arrows. The nodes which
model the routes are not included in the diagram but the data which would be communicated
to them is labelled.

Track
Segment

Track
Segment

Track
Segment

Track
Segment

Points

Configuration

2 Aspect
Signal

Configuration

Aspect Point Setting

Trains Trains

Trains

Configuration Configuration Configuration

Configuration

Figure 5.6: How the components communicate in a model junction

Figure 5.7: The track plan for the junction

This junction is represented in SCADE using the following code. We have instantiated sev-
eral Track Segment1 nodes to represent straight segments of track entering and leaving the
junctioning. One Track Segment3 node was used to model the junction itself.

-- Top left track and signal

LIGHTS_SET , SHOWS_RED , SHOWS_GREEN =

Light2Aspect(DRIVE_RED , DRIVE_GREEN);



5.2 Railway Example 71

TRACKOCC_1 , TRAINOUT_1 , TRACK1_CR =

Track_Segment1( TRAININ , SHOWS_RED, false , SHOWS_GREEN );

-- Junction

NORM_FREE , NORM_LOCK , REV_FREE , REV_LOCK =

Point(DRIVE_NORM, DRIVE_REV, TRACKOCC_2);

TRACKOCC_2, TRAINOUT2_1 , TRAINOUT2_2, TRAINOUT2_3, =

Track_Segment3(TRAINOUT1_O, false , false,

false, true, false, NORM_LOCK , REV_LOCK);

-- exit tracks

TRACKOCC3_1 , TRAINOUT3_1 , TRACK3_CR =

Track_Segment1( TRAINOUT2_2, false, false , true );

TRACKOCC4_1 , TRAINOUT4_1 , TRACK4_CR =

Track_Segment1( TRAINOUT2_3, false, false , true );

We will now discuss a larger example of a railway segment which was based on a track
plan provided to us by our industrial partner Invensys Rail. The simplified railway segment
contains the following components. The track plan used to layout these components can be
seen in figure 5.8.

• 11 segments of track

• 4 points

• 6 routes (4 of which operate points)

• 7 lights

• A route controller

The track segment contains two routes control the entrance and exit track segments for this
piece of railway. These routes operate the left most signals and do not control any points.
Out of the four routes that cross the junction, two of them control the flow of incoming trains
across the junction. The two incoming routes set the points such that trains will be directed
to enter either the top platform or the bottom platform. The remaining two routes allow
trains two leave the station and proceed down the outbound track.



72 Chapter 5 Concrete Modelling of the Railway Domain

Station

Trains In

Trains Out

Figure 5.8: The track plan for our abstract railway

This was modelled as one node in the SCADE language. While the node has a large number
of internal variables, it only has seven input variables. Six of these input variables represent
that a route is being requested and are passed to the Route controller. The other variable
represents that a train has entered our railway and is passed to the node representing the
eastern most segment of track.

5.2.2 Route Controller

Using only the components we have specified so far does not allow us to model the complete
behaviour of the railway. There is certain information contained in the control table that
speaks about routes that we have not captured in our approach so far. Mainly we need to
model that routes can conflict with each other. To do this a Route Controller was added to
our model. This filters route requests and only allowing non-conflicting route requests to be
passed to the Routes. Routes also pass information on whether or not they are selected back
to the controller.

5.3 Verification

There are 3 different types of safety condition we managed to verify in this approach.

• Some of the applicable safety conditions from the first example were verified.

• Some of the safety conditions from the first example were modified so that they could
be applied to individual components, possibly under certain side conditions.

• New safety conditions were verified expressing properties of the topology.

5.3.1 The Verification of Safety Conditions from the First Approach

In order to show that our new modelling approach has correctly captured the way the railway
should behave, we attempted to verify some of the safety conditions from the first approach.

• When a route becomes set it causes its associated points to lock.



5.3 Verification 73

• No proceed (green or white) aspect is shown on the lights if none of the routes controlling
them are set.

• No proceed aspect is shown if a train occupies the track controlled by the signal.

5.3.2 New possibilities for Verification Using this Approach

We will now look at some of the new possibilities that this approach allows for the verification
of a railway model.

Modular Verification

The modular nature and topological aspect of this approach gives us new opportunities for
verification that weren’t possible in the first approach. The modularity of this approach allows
us to verify individual components or modules containing groups of components.

In the first approach the safety condition “No green aspect should be shown if a train is in
route” or

TrainInRoute→ ¬GreenAspect

was proven for each route of the ladder logic program.

The new approach has given us the opportunity to verify this safety condition for each indi-
vidual route and can be seen in the appendix B.5.1. The safety condition was modified to
include the side condition that the route had been called. Properties about other the other
lights set by the route were also proven. The variables W track clear and G track clear

both represent that the track required for their corresponding light (White or Green) is clear.

(RouteCall∧¬W track clear∧¬G track clear)→ (DriveRed∧¬DriveGreen∧¬DriveWhite)

The correctness of our signals was modified using the two safety conditions. The first (see
5.1) was used to check that no more than one light was showing. The second (see 5.2) was
used to show that at least one light was always shown in our model. These could of course be
combined into one safety condition but for readability we will present them as two separate
formulas.

¬(Green ∧White ∨Green ∧Red ∨White ∧Red) (5.1)

Green ∨White ∨Red (5.2)



74 Chapter 5 Concrete Modelling of the Railway Domain

A

B

C

D
Normal

Reverse

Figure 5.9: A Typical Junction

Verification of Topological Properties

Consider a simple model of a junction Figure 5.9 made up of several track segments and a
point. We can now verify properties which speak about how a train should move around this
junction. If a train enters junction B at A and the point is set in Normal, then the train
should leave the junction heading towards D. Similarly, if a train enters the junction B at A
and the point is set in Reverse then the train should leave the junction heading towards C.
This safety property was formalised in the SCADE language along with a junction using our
modelling approach. The safety property was then verified and shown to hold in our model
of a junction. It is also possible to speak about how lights affect the movement of the trains
whereas in the previous approach this was not possible.

The junction example also highlights another new possibility that has resulted from this
approach. Individual components or modules of components can have safety properties ex-
pressed for them and verified. Safety conditions were also verified for two connected pieces of
track. These ensured that any trains entering a segment 5.3 or moving between two segments
5.4 would behave as expected. We want to ensure trains do not disappear when moving
around track.

Pre TrainIn→ TrackOccupied (5.3)

(¬Pre vTrack1 Out) ∨ (vTrack2 TOcc ∧ (¬Pre TrainIn ∨ vTrack1 TOcc)) (5.4)

5.4 Comparison with the First Approach

This chapter will be concluded with a few points which highlight the differences between the
two approaches.

1. First Approach (Chapter 4): We built an automatic translation tool.

• Ladder logic specification given by industry. This meant that the specification had
already been performed. Our task was to translate the ladder logic into a format
in which it could be verified in SCADE .



5.4 Comparison with the First Approach 75

• This approach covered a much larger model. There are many extra components
captured by the ladder logic specification which lead to the behaviour of this model
being more complicated.

2. Second Approach (Chapter 5): We have invented a new modelling approach which
allowed us to also specify and verify the topology.

• We have formalised reusable components which could be used to specify further
segments of railway.

• Industry wants to get away from ladder logic towards higher level languages with
greater expressiveness.

• We have been able to test another method of modelling using the SCADE suite.
Modelling components such as the signals using finite state machines has shown
us how they perform under composition.

The first approach tested the capabilities of SCADE on a pre-existing well defined problem.
The model was given by industry and therefore captures a large amount of detail. This
differed from the second approach where our problem was not so well defined and a greater
number of design decisions had to be taken by the writer. It was not our aim to capture the
fine detail of the railway but abstract properties e.g. about the topology, not captured by the
low level ladder logic specification.



76 Chapter 5 Concrete Modelling of the Railway Domain



Chapter 6

Conclusion

We will now conclude this thesis with a summary of the work which has been written about
in this document followed by a discussion of possibilities for future work.

6.1 Summary

This thesis contains a detailed feasibility study into the use of the SCADE suite for the
verification of railway control systems. We began by studying the techniques and theory un-
derlying the model checking component of the SCADE suite. This included the brief overview
of model checking followed by an in depth discussion of two methods used to decide the va-
lidity of propositional formulae. The first being the tautology checking algorithm developed
by St̊almarck and the second being binary decision diagrams. This has been followed by
two approaches which allowed us to examine the use of the SCADE suite for modelling and
verification purposes. In the first approach we provided a method to capture the semantics of
a ladder logic program as a labelled transition system and produced a tool to translate pro-
grams into the SCADE language. The approach was successfully applied to two ladder logic
programs for real world railway interlockings. These interlockings were then verified using
the model checking component of the SCADE suite. We were able to draw several conclusions
from this:

• SCADE is capable of verifying a complex real world system and it does so in a relatively
short period of time. It produces counter examples for any falsified safety conditions
which can be used to track down the cause of the violation. These factors combined
with the fact that it is a commercial tool mean that it is practical for it to be used in
industry.

• We were able to explore the functionality of the SCADE suite. The model checking
component was found to be a so called black box. We were unable to fine tune the
model checking process. While this inhibits scientific experimentation it could be an
advantage for its use in industry.

• The model checking capabilities of SCADE are comparable in terms of speed with those
of the previous efforts in Swansea University and an competing academic tool.

77



78 Chapter 6 Conclusion

We then proceed to explore one possible approach to modelling the railway domain from
scratch. This was a new approached based on previous work in the railway modelling area.
Individual components of the railway were modelled from scratch and used to form an abstract
model of a segment of railway. Verification was then performed in various parts of the new
model. The following is a overview of results that can be drawn from the creation and
application of this approach:

• The new approach is modular which encourages reuse. Verification of at the component
level and using modules can be performed.

• The topology of the railway has been captured and safety conditions have been verified
regarding it.

• This makes use of a higher level language which is following the trend of industry.

6.2 Future Work

Finally we will conclude this thesis by looking into some possibilities for future work. These
fall into two categories:

• Extending and improving the approaches we have presented in this thesis.

• Exploring the problems presented in this thesis using a new technique.

Identifying and Adding Further Invariants to Our Interlocking Models

The SCADE models produced through the translation of ladder logic programs are under
specified and do not capture the entirety of the railway domain. Currently each counter
example has to be examined in great detail by a team of engineers before the cause of the
violation can be deduced. An invariant can be added which extends the model to include the
property not currently captured. It would be interesting to see if some form of automated
reasoning can be used to help identify likely causes. A tool could then be developed to aid
the process of adding invariants.

Extending The Concrete Modelling Approach

This project was a feasibility study and therefore we did not set out to capture the entirety
of the model. So far no complete formal specification has been given. Performing the spec-
ification using a language such as CASL [ABK+02] could be the topic of future work. This
modelling approach is highly abstract and does not capture many of the details of the railway,
such as the large variety of signals. This model does not capture any of the behaviour of the
railway station which plays a critical role in the behaviour of the first approach. There are
also many areas which our model could be expanded to capture properties not treated by
either approach in this paper. One such possibility is geographic properties such as distances
and model the movement of trains in greater detail.



6.2 Future Work 79

Applying a Combination of Theorem Proving and Model Checking

In work performed so far at Swansea University mainly model checking techniques have been
applied to the railway verification problem. We propose that a combination of first order
theorem proving and model checking may be applicable. Some work has already been carried
out in the area combining the theorem prover PVS with a BDD based model checker for
the mu-calculus [RSS95] and the Symbolic Analysis Laboratory (SAL) [Sha00]. One theorem
prover we have considered is the Minlog system [BBS+98]. Minlog is an interactive theorem
prover which allows for the creation of constructive proofs and programs to be extracted from
such proofs. It would be most elegant to extract a ladder logic program from a proof.



80 Chapter 6 Conclusion



Bibliography

[61103] IEC Standard 61131-3. Programmable Controllers - Part 3: Programming lan-
guages. IEC, 2003.

[ABK+02] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses, D. Sannella,
and A. Tarlecki. Casl: the common algebraic specification language. Theoretical
Computer Science, 286(2):153 – 196, 2002.

[ADK+05] Nina Amla, Xiaoqun Du, Andreas Kuehlmann, Robert P. Kurshan, and Ken-
neth L. McMillan. An analysis of sat-based model checking techniques in an
industrial environment. In Dominique Borrione and Wolfgang Paul, editors, Cor-
rect Hardware Design and Verification Methods, volume 3725 of Lecture Notes in
Computer Science, pages 254–268. Springer Berlin / Heidelberg, 2005.

[ADS+06] P. Abdulla, J. Deneux, G. Stalmarck, H. Argen, and Ove. Akerlund. Design-
ing Safe, Reliable Systems Using SCADE. Lecture Notes in Computer Science,
4313/2006:115–129, 2006.

[Ake78] S. Akers. Binary decision diagrams. Computers, IEEE Transactions on, C-
27(6):509 –516, 1978.

[BBS+98] H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and W. Zuber. Proof the-
ory at work: Program development in the minlog system. Automated Deduction
- A Basis for Applications, volume II: Systems and Implementation Techniques
of Applied Logic Series, pages 41–71, 1998.

[BC04] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Develop-
ment. SpringerVerlag, 2004.

[BCC+99] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using sat procedures instead of bdds. In DAC ’99: Proceedings of the
36th annual ACM/IEEE Design Automation Conference, pages 317–320, New
York, NY, USA, 1999. ACM.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillian, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

[Bjö05] M. Björk. A first order extension of st̊almarck’s method. In Geoff Sutcliffe and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, volume 3835 of Lecture Notes in Computer Science, pages 276–291.
Springer Berlin / Heidelberg, 2005.

81



82 BIBLIOGRAPHY

[Bjö09] M. Björk. First order st̊almarck. Journal of Automated Reasoning, 42:99–122,
2009. 10.1007/s10817-008-9115-4.

[Bor98] A. Boralv. Case study: Formal verication of a computerized railway interlocking.
Formal Aspects of Computing, 10:338 – 360, 1998.

[Bry86] K. L. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, Volume 35, 1986.

[Bus98] S. R. Buss. Handbook of Proof Theory, volume 137 of Studies in Logic and the
Foundations of Mathematics. Elsevier, 1998.

[BW96] R. Bollig and I. Wegener. Improving the Variable Ordering of OBDDs is NP-
Complete, volume Volume 45. IEEE Transcations on Computers, 1996.

[CBRZ01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Formal Methods in System Design, 19:7–34,
2001. 10.1023/A:1011276507260.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans. Pro-
gram. Lang. Syst., 8(2):244–263, 1986.

[CESS08] K. Claessen, N. Een, M. Sheeran, and N. Sorensson. Sat-solving in practice. In
Discrete Event Systems, 2008. WODES 2008. 9th International Workshop on,
pages 61–67, May 2008.

[CGJ+01] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the state
explosion problem in model checking. In Informatics - 10 Years Back. 10 Years
Ahead., pages 176–194, London, UK, 2001. Springer-Verlag.

[CGP99] E. M. Clarke, O. Grumberg, and P. A. Peled. Model Checking. MIT Press, 1999.

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2001.

[CMSW99] P. Caspi, C. Mazuet, R. Salem, and D. Weber. Formal design of distributed con-
trol systems with Lustre. In Proc. Safecomp99, pages 396–409. Springer-Verlag,
1999.

[Cri87] A. Cribbens. Solid-state interlocking (ssi): an integrated electronic signalling
system for mainline railways. Electric Power Applications, IEE Proceedings B,
134(3):148 –158, 1987.

[CS03] K. Claessen and N. Sörensson. New techniques that improve MACE-style nite
model nding. CADE-19 Workshop on Model Computation, Miami, FL, 2003.

[DBCB04] S. Dajani-Brown, D. Cofer, and A. Bouali. Formal verification of an avionics
sensor voter. 3253:5 – 20, 2004.

[DDM06] B. Dutertre and L. De Moura. The YICES SMT solver. Tool paper at http://yices.
csl. sri. com/tool-paper. pdf, 2006.



BIBLIOGRAPHY 83

[D90] M. DAgostino. Investigations into the complexity of some propositional calculi,
D. Phil. Dissertation. PRG Technical Monographs 88, Programming Research
Group, Oxford University, 1990.

[EN04] N. Eén and Sörensson N. An extensible sat-solver. Theory and Applications
of Satisfiability Testing, Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 2919:333–336, 2004.

[Est09] Esterel Technologies. Scade Language Primer. 2009.

[FH98] W. Fokkink and P. Hollingshead. Verification of interlockings: from control tables
to ladder logic diagrams. In J. F. Groote, S. P. Luttik, and J. J. van Wamel, edi-
tors, Proceedings of the 3rd Workshop on Formal Methods for Industrial Critical
Systems - FMICS’98, pages 171–185, 1998.

[GvVK95] J.F. Groote, S.F.M. van Vlijmen, and J.W.C. Koorn. The safety guarantee-
ing system at station Hoorn-Kersenboogerd. Computer Assurance. COMPASS
95. ’Systems Integrity, Software Safety and Process Security’. Proceedings of the
Tenth Annual Conference on, pages 57 –68, 1995.

[Hag08] G. Hagen. Verifying safety properties of Lustre programs: an SMT-based ap-
proach. PhD thesis, The University of Iowa, 2008.

[HP99] A. Haxthausen and J. Peleska. Formal development and verification of a dis-
tributed railway control system. IEEE Transactions on Software Engineering,
26:687–701, 1999.

[HT08] G. Hagen and C. Tinelli. Scaling up the formal verification of Lustre programs
with SMT-based techniques. In FMCAD ’08: Proceedings of the 2008 Inter-
national Conference on Formal Methods in Computer-Aided Design, pages 1–9,
Piscataway, NJ, USA, 2008. IEEE Press.

[Inv] Invensys rail webpage, last accessed in November 2010.
http://www.Invensysrail.com.

[Jam10] P. James. SAT-Based Model Checking and its Applications to Train Control
Systems. Swansea University, 2010.

[JES07] P. Jackson, B. Ellis, and K. Sharp. Using SMT solvers to verify high-integrity
programs. In AFM ’07: Proceedings of the second workshop on Automated formal
methods, pages 60–68, New York, NY, USA, 2007. ACM.

[Kan08] K. Kanso. Formal Verification of Ladder Logic. Swansea University, 2008.

[KR01] D. Kerr and T. Rowbotham. Introduction to Railway Signalling. Institution of
Railway Signal Engineers, 2001.

[LT00] P. Letouzey and L. Théry. Formalizing St̊almarck’s algorithm in Coq. In Mark Aa-
gaard and John Harrison, editors, Theorem Proving in Higher Order Logics, vol-
ume 1869 of Lecture Notes in Computer Science, pages 388–405. Springer Berlin
/ Heidelberg, 2000. 10.1007/3-540-44659-1 24.

[Mar09] V. M. Marek. Introduction to Mathematics of Satisfiability. Studies in Informatics.
Chapman and Hall/CRC, 2009.



84 BIBLIOGRAPHY

[McM92] K. L. McMillian. Symbolic model checking: An approach to the state explosion
problem. Carnegie Mellon University, Pittsburgh, PA, USA, 1992. UMI Order
No. GAX92-24209.

[Mey92] B. Meyer. Applying d̈esign by contracẗ. Computer, 25(10):40–51, 1992.

[Min] Minisat webpage, last accessed in October 2010. http://minisat.se/Main.html.

[M.S01] M.Schumann, J. Automated Theorem Proving in Software Engineering. 2001.

[Nor01] J. Nordström. Stalmarcks method versus resolution: A comparative theoretical
study, 2001.

[Pel08] R. Pelánek. Fighting state space explosion: Review and evaluation. In In Proc.
of Formal Methods for Industrial Critical Systems, FMICS08, 2008.

[RSS95] S. Rajan, N. Shankar, and M. Srivas. An integration of model checking with
automated proof checking. In Proceedings of the 7th International Conference on
Computer Aided Verification, pages 84–97, London, UK, 1995. Springer-Verlag.

[Sha00] N. Shankar. Combining theorem proving and model checking through symbolic
analysis. In Catuscia Palamidessi, editor, CONCUR 2000 Concurrency Theory,
volume 1877 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin
/ Heidelberg, 2000.

[Smu69] R. S. Smullyan. First Order Logic. Springer-Verlag, Berlin, 1969.

[SS00] M. Sheeran and G. St̊almarck. A Tutorial on St̊almarck’s Proof Procedure for
Propositional Logic. Form. Methods Syst. Des., 16(1):23–58, 2000.

[SSS00] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using in-
duction and a sat-solver. In FMCAD ’00: Proceedings of the Third International
Conference on Formal Methods in Computer-Aided Design, pages 108–125, Lon-
don, UK, 2000. Springer-Verlag.

[St̊a94] G. St̊almarck. System for determining propositional logic theorems by applying
values and rules to triplets that are generated from boolean formula. US Patent,
(5,276,897), 1994.

[YBO+98] B. Yang, R. E. Bryant, D. O’Hallaron, A. Biere, O. Coudert, G. Janssen, R. Ran-
jan, and F. Somenzi. A Performance Study of BDD-Based Model Checking, vol-
ume 1522/1998. Springer Berlin / Heidelberg, 1998.



Appendix A

Proof Systems

A.1 Gentzen’s Sequent Calculus

These rules and propositions were taken from St̊almarck [SS00].
Definition 32 (Sequent). Every line in sequent calculus proof is called a sequent and takes
the following form.

A1, . . . , Ak ` B1, . . . , Bl

In this text we are using the symbol ` to represent the sequent arrow. 1 The following formula
captures the meaning of the above sequent.

k∧
i=1

Ai ⊃
l∨

j−1
Bj

Intuitively you can read a sequent as: If the conjunction of all of the Ais is true then one of
the Bjs in the disjunction must be true.

Definition 33 (Gentzen’s Sequent Calculus PK).

Axiom

A ` A

Structural Rules

Γ ` ∆(Thinning)
Γ,Θ ` ∆,Λ

Γ, A ` ∆ Γ ` ∆, A
(Cut)

Γ ` ∆

1The sequent arrow is sometimes represented using the symbol →

85



86 Chapter A Proof Systems

Operational Rules

Γ, A ` ∆ Γ, B ` ∆
(OrL)

Γ, A ∨B ` ∆

Γ ` ∆, A,B
(OrR)

Γ ` ∆, A ∨B

Γ, A,B ` ∆
(AndL)

Γ, A ∧B ` ∆

Γ ` ∆, A Γ ` ∆, B
(AndR)

Γ,` ∆, A ∧B

Γ ` ∆, A Γ, B ` ∆
(ImpL)

Γ, A→ B ` ∆

Γ, A ` ∆, B
(ImpR)

Γ ` ∆, A→ B

Γ ` ∆, A
(NegL)

Γ,¬A ` ∆

Γ, A ` ∆
(NegR)

Γ ` ∆,¬A
Proposition 1 (Sub-formula Principle). If a PK-proof P does not contain any application of
the cut rule, then All of the formulas occurring in P must be a sub-formula of some formula
in the end sequent of P.

Having the sub-formula principle allowed St̊almarck to place bounds on the size of proofs
created by his algorithm.

Proposition 2 (Removing Thinning). If we allow axioms of the form Γ, A ` A,∆ then it is
possible to remove the thinning rule as it is redundant and is no longer of any use.

Removing the thinning rule gives us a proof system that is essentially the same as that by
Kleene [?]. This proof system has the advantage that it is invertible i.e., if a sequent below
the line of an inference is valid then the sequents above the line are also valid.

A.2 Smullyan’s Semantic Tableaux

The Analytic tableaux form a refutation proof system. You begin a proof by assuming your
propositional formula is false. Then a tree is constructed using the rules. The formula is de-
constructed into its constituent sub-formulae using the rules And, Not-Or and Not-Impl. Case
distinction on the formula is performed by the rules Or, Not-And and Impl. The application
of a case distinction rule causes a branch to occur in the proof tree. If each branch of the tree
contains a contradiction then the formula is refuted.
Definition 34 (Semantic Tableaux).

A ∧B(And)
A
B

¬(A ∨B)
(Not−Or) ¬A

¬B
A ∨B(Or)
A|B

¬(A ∧B)
(Not−And)

¬A|¬B

A→ B(Impl)
¬A|B

¬(A→ B)
(Not− Impl)

A
¬B

¬¬A(Not−Not)
A



A.3 Propagation Rules for St̊almarck’s Tautology Checker 87

A.3 Propagation Rules for St̊almarck’s Tautology Checker

In the following the proper rules used in St̊almarck’s tautology checking algorithm are pre-
sented from [Nor01].

Definition 35 (Formula Equivalence Rules).

P ≡ P (A.1)

P ≡ Q
Q ≡ P

(A.2)

P ≡ Q Q ≡ R
P ≡ R

(A.3)

P ≡ ⊥
P ′ ≡ > (A.4)

P ≡ Q Q ≡ >
P ≡ >

(A.5)

P ≡ Q Q ≡ ⊥
P ≡ ⊥

(A.6)

P ≡ Q
P ′ ≡ Q′

(A.7)

P ≡ >
P ′ ≡ ⊥ (A.8)

P ≡ > Q ≡ >
P ≡ Q

(A.9)

P ≡ ⊥ Q ≡ ⊥
P ≡ Q

(A.10)

P ≡ P ′
⊥ (A.11)

Definition 36 (Propagation Rules). Rules for conjunction

P ∧Q ≡ >
P ≡ >

P ∧Q ≡ >
Q ≡ >

(A.12)

P ∧Q ≡ P ′
P ≡ >

P ∧Q ≡ Q′
Q ≡ >

(A.13)



88 Chapter A Proof Systems

P ∧Q ≡ P ′
Q ≡ ⊥

P ∧Q ≡ Q′
P ≡ ⊥

(A.14)

P ≡ >
P ∧Q ≡ Q

Q ≡ >
P ∧Q ≡ P

(A.15)

P ≡ ⊥
P ∧Q ≡ ⊥

Q ≡ ⊥
P ∧Q ≡ ⊥

(A.16)

P ≡ Q
P ∧Q ≡ P

P ≡ Q
P ∧Q ≡ Q

(A.17)

P ≡ Q′
P ∧Q ≡ ⊥

(A.18)

Rules for disjunction

P ∨Q ≡ ⊥
P ≡ ⊥

P ∨Q ≡ ⊥
Q ≡ ⊥

(A.19)

P ∨Q ≡ P ′
P ≡ ⊥

P ∨Q ≡ Q′
Q ≡ ⊥

(A.20)

P ∨Q ≡ P ′
Q ≡ >

P ∨Q ≡ Q′
P ≡ >

(A.21)

P ≡ >
P ∨Q ≡ >

Q ≡ >
P ∨Q ≡ >

(A.22)

P ≡ Q
P ∨Q ≡ P

P ≡ Q
P ∨Q ≡ Q

(A.23)

P ≡ Q′
P ∨Q ≡ >

(A.24)

Rules for implication

P → Q ≡ ⊥
P ≡ >

(A.25)

P → Q ≡ ⊥
Q ≡ ⊥

(A.26)

P → Q ≡ P
P ≡ >

(A.27)



A.3 Propagation Rules for St̊almarck’s Tautology Checker 89

P → Q ≡ P
Q ≡ >

(A.28)

P → Q ≡ Q′
P ≡ ⊥

(A.29)

P → Q ≡ Q′
Q ≡ ⊥

(A.30)

P ≡ >
P → Q ≡ Q (A.31)

Q ≡ >
P → Q ≡ >

(A.32)

P ≡ ⊥
P → Q ≡ > (A.33)

Q ≡ ⊥
P → Q ≡ P ′

(A.34)

P ≡ Q′

P → Q ≡ P ′
P ≡ Q′

P → Q ≡ Q
(A.35)

Rules for bi-implication

P ↔ Q ≡ >
P ≡ Q

(A.36)

P ↔ Q ≡ ⊥
P ≡ Q′

(A.37)

P ↔ Q ≡ P
Q ≡ >

P ↔ Q ≡ Q
P ≡ >

(A.38)

P ↔ Q ≡ P ′
Q ≡ ⊥

P ↔ Q ≡ Q′
P ≡ ⊥

(A.39)

Q ≡ >
P ↔ Q ≡ P

P ≡ >
P ↔ Q ≡ Q (A.40)

Q ≡ ⊥
P ↔ Q ≡ P ′

P ≡ ⊥
P ↔ Q ≡ Q′ (A.41)

P ≡ Q
P ↔ Q ≡ >

(A.42)



90 Chapter A Proof Systems

P ≡ Q′
P ↔ Q ≡ ⊥

(A.43)



Appendix B

Concrete Railway Model

In this chapter we will present the work produced in attempt to provide a concrete model of
the railway (See Chapter 5).

B.1 Railway Components

In the following we have tried to model components of the railway with the intention that
they could be verified individually and then recombined into different configurations.

Track Segment 1: Node was used to model a straight piece of track. We have simplified the
topological aspect somewhat since the track is generally set up for trains travelling in one
direction. We have assumed that a train will not travel the wrong way down a track.

node Track_Segment1(TrainIn, RedLight, GreenLight, WhiteLight : bool)

returns(TrackOccupied, TrainOut, Crash: bool)

var

let

automaton

initial state EMPTY

let

TrackOccupied = false;

TrainOut = false;

Crash = false;

tel

until

if (TrainIn) restart OCCUPIED;

91



92 Chapter B Concrete Railway Model

state OCCUPIED

let

TrackOccupied = true ;

TrainOut = false;

Crash = false;

tel

until

if ((GreenLight or WhiteLight) and not RedLight) restart TRAINLEAVE;

if (TrainIn) restart CRASH;

state TRAINLEAVE

let

TrackOccupied = true;

TrainOut = true;

Crash = false;

tel

until

if (TrainIn) restart CRASH;

if (TrainOut) restart EMPTY;

state CRASH

let

TrackOccupied = true;

Crash = true;

TrainOut = false;

tel

returns .. ;

tel

Track Segment 2: Originally we had modelled certain junctions using this component and of
track using this component. we decided however that we would like to capture all possible
ways a train can move across a junction we therefore converted all track segments in junctions
to using Track Segment 3.

node Track_Segment2(TrainIn1, TrainIn2, RedLight, GreenLight,

WhiteLight, PointsNorm, PointsRev : bool)

returns(TrackOccupied, TrainOut1, TrainOut2, Crash: bool)

var



B.1 Railway Components 93

let

automaton

initial state EMPTY

let

TrackOccupied = false;

TrainOut1 = false;

TrainOut2 = false;

Crash = false;

tel

until

if (TrainIn1 or TrainIn2) restart OCCUPIED;

state OCCUPIED

let

TrackOccupied = true;

TrainOut1 = false;

TrainOut2 = false;

Crash = false;

tel

until

if ((GreenLight or WhiteLight) and not RedLight) restart TRAINLEAVE;

if (TrainIn1 or TrainIn2) restart CRASH;

state TRAINLEAVE

let

TrackOccupied = true;

TrainOut1 = if (PointsRev) then true else false;

TrainOut2 = if (PointsNorm) then true else false;

Crash = false;

tel

until

if (TrainIn1 or TrainIn2) restart CRASH;

if (TrainOut1 or TrainOut2) restart EMPTY;

state CRASH

let



94 Chapter B Concrete Railway Model

TrackOccupied = true;

Crash = true;

TrainOut1 = false;

TrainOut2 = false;

tel

returns .. ;

tel

Track Segment 3: This is the node that was used to model junctions in the track. The just
has been modelled in such a way that the direction of travel along with the points dictate
how a train exits the track.

node Track_Segment3(TrainIn1, TrainIn2, TrainIn3, RedLight,

GreenLight, WhiteLight, PointsNorm , PointsRev : bool)

returns(TrackOccupied, TrainOut1, TrainOut2, TrainOut3 , Crash: bool)

var

Direction : bool;

let

Direction = false -> if (TrainIn1) then true else (if (TrainIn3) then false

else pre Direction);

automaton

initial state EMPTY

let

TrackOccupied = false;

TrainOut1 = false;

TrainOut2 = false;

TrainOut3 = false;

Crash = false;

tel

until

if (TrainIn1 or TrainIn2 or TrainIn3) restart OCCUPIED;

state OCCUPIED

let

TrackOccupied = true ;

TrainOut1 = false;

Crash = false;



B.1 Railway Components 95

TrainOut2 = false;

TrainOut3 = false;

tel

until

if ((GreenLight or WhiteLight) and not RedLight) restart TRAINLEAVE;

if (TrainIn1 or TrainIn2 or TrainIn3) restart CRASH;

state TRAINLEAVE

let

TrackOccupied = true;

TrainOut1 = if (Direction) then false else true ;

Crash = false;

TrainOut2 = if (Direction and PointsRev) then true else false ;

TrainOut3 = if (Direction and PointsNorm) then true else false;

tel

until

if (TrainIn1 or TrainIn2 or TrainIn3) restart CRASH;

if (TrainOut1 or TrainOut2 or TrainOut3) restart EMPTY;

state CRASH

let

TrackOccupied = true;

Crash = true;

TrainOut1 = false;

TrainOut2 = false;

TrainOut3 = false;

tel

returns .. ;

tel

node Route(RouteCall, RouteSet, PointsLocked,

LightsSet, W_track_clear, G_track_clear: bool)

returns(RouteSelected, DrivePL, DriveG, DriveW, DriveR: bool)

let

automaton

initial state STATE1

unless



96 Chapter B Concrete Railway Model

if (RouteCall) restart STATE2;

let

RouteSelected = false;

DrivePL = false;

DriveG = false;

DriveW = false;

DriveR = true;

tel

state STATE2

unless

if (not RouteSet) restart STATE1;

if (RouteCall and PointsLocked and LightsSet) restart STATE3;

let

RouteSelected = false;

DrivePL = true;

DriveG = if (W_track_clear and G_track_clear)

then true

else false;

DriveW = if (W_track_clear and not G_track_clear)

then true

else false;

DriveR = if ( (W_track_clear and G_track_clear)

or (W_track_clear and not G_track_clear))

then false

else true;

tel

state STATE3

unless

if (not RouteSet) restart STATE1;

let

RouteSelected = true;

DrivePL = true;

DriveG = if (W_track_clear and G_track_clear)

then true

else false;

DriveW = if (W_track_clear and not G_track_clear)

then true

else false;

DriveR = if ( (W_track_clear and G_track_clear)

or (W_track_clear and not G_track_clear))



B.1 Railway Components 97

then false

else true;

tel

returns .. ;

tel

The following is the SCADE node that was used to model a point. It contains a finite state
machine that models the 4 possible states a point can be in: Normal and free , Normal and
locked, Reverse and free, Reverse and locked. One further state that could be added in future
is the Unknown state. This is where the point is in neither Reverse or Normal but in some
indeterminate state.

node Point(Normal, Reverse, Occupied : bool)

returns(NLock, NFree, RLock, RFree: bool)

let

automaton

initial state NORMAL_FREE

unless

if (Occupied) restart NORMAL_LOCK;

if (Reverse and not Normal and not Occupied) restart REVERSE_FREE;

let

NLock = false;

RLock = false;

NFree = true ;

RFree = false ;

tel

until

state NORMAL_LOCK

unless

if (not Occupied) restart NORMAL_FREE;

let

NLock = true;

RLock = false;

NFree = false ;

RFree = false ;

tel

state REVERSE_FREE

unless

if (Occupied) restart REVERSE_LOCK;



98 Chapter B Concrete Railway Model

if (not Reverse and Normal and not Occupied) restart NORMAL_FREE;

let

NLock = false;

RLock = false;

NFree = false;

RFree = true ;

tel

state REVERSE_LOCK

unless

if (not Occupied) restart REVERSE_FREE;

let

NLock = false;

RLock = true;

NFree = false;

RFree = false;

tel

returns .. ;

tel

Pointif is a model of a point using if statements instead of the finite state machines.

node Pointif(Normal, Reverse, Occupied : bool)

returns(NLock, NFree, RLock, RFree: bool)

let

NLock = (Occupied) ->

( (pre NFree and Occupied) or (pre NLock and Occupied));

RLock = false -> (pre RFree or pre RLock) and Occupied ;

NFree = ( (Normal and not Reverse) or (not Normal and not Reverse)

or (Normal and Reverse)) and not Occupied

-> ( ((pre RFree and not Reverse and Normal) or (pre NFree and

(not Reverse or (Reverse and Normal))or pre NLock)) and not Occupied);

RFree = (not Occupied and (Reverse and not Normal)) ->



B.1 Railway Components 99

( (pre NFree and not Normal and Reverse and not Occupied ) or

( (pre RFree and (not Normal and (notOccupied or not Reverse)

or (Normal and Reverse)) ) and not Occupied)

or (pre RLock and not Occupied)) ;

tel

node PointEquiv(Normal, Reverse, Occupied: bool)

returns(Equivalent , NLock1, NFree1, RLock1, RFree1,

NLock2, NFree2, RLock2, RFree2 : bool)

let

NLock1, NFree1, RLock1, RFree1 = Point(Normal, Reverse, Occupied);

NLock2, NFree2, RLock2, RFree2 = Pointif(Normal, Reverse, Occupied);

Equivalent =((NLock1 and NLock2) or (not NLock1 and not NLock2)) and

((NFree1 and NFree2) or (not NFree1 and not NFree2)) and

((RFree1 and RFree2) or (not RFree1 and not RFree2)) and

((RLock1 and RLock2) or (not RLock1 and not RLock2));

tel

node Point2(Normal, Reverse, Occupied : bool)

returns(NLock, NFree, RLock, RFree: bool)

let

automaton

initial state INITIAL

unless

if (false -> Occupied) restart NORMAL_LOCK;

if (false -> Normal) restart NORMAL_FREE;

if (false -> Reverse) restart REVERSE_FREE;

if (false -> not Reverse and not Normal and not Occupied) restart NORMAL_FREE;

let

NLock = false;

RLock = false;

NFree = true ;

RFree = false ;

tel



100 Chapter B Concrete Railway Model

until

state NORMAL_FREE

unless

if (Occupied) restart NORMAL_LOCK;

if (Reverse and not Normal and not Occupied) restart REVERSE_FREE;

let

NLock = false;

RLock = false;

NFree = true ;

RFree = false ;

tel

until

state NORMAL_LOCK

unless

if (not Occupied) restart NORMAL_FREE;

let

NLock = true;

RLock = false;

NFree = false ;

RFree = false ;

tel

state REVERSE_FREE

unless

if (Occupied) restart REVERSE_LOCK;

if (not Reverse and Normal and not Occupied) restart NORMAL_FREE;

let

NLock = false;

RLock = false;

NFree = false;

RFree = true ;

tel

state REVERSE_LOCK

unless



B.1 Railway Components 101

if (not Occupied) restart REVERSE_FREE;

let

NLock = false;

RLock = true;

NFree = false;

RFree = false;

tel

returns .. ;

tel

node Pointif2(Normal, Reverse, Occupied : bool)

returns(NLock, NFree, RLock, RFree: bool)

let

NLock = false ->

( (pre NFree and Occupied) or (pre NLock and Occupied));

RLock = false -> (pre RFree or pre RLock) and Occupied ;

NFree = true

-> ( ((pre RFree and not Reverse and Normal) or (pre NFree and

(not Reverse or (Reverse and Normal))or pre NLock)) and not Occupied);

RFree = false ->

( (pre NFree and not Normal and Reverse and not Occupied ) or

( (pre RFree and (not Normal and

(not Occupied or not Reverse) or (Normal and Reverse)) ) and not Occupied)

or (pre RLock and not Occupied)) ;

tel

node PointEquiv2(Normal, Reverse, Occupied: bool)

returns(Equivalent, Equivalent2, Equivalent3, NLock1,

NFree1, RLock1, RFree1, NLock2, NFree2,

RLock2, RFree2, NLock3, NFree3, RLock3, RFree3,

NLock4, NFree4, RLock4, RFree4 : bool)

let

NLock1, NFree1, RLock1, RFree1 = Point2(Normal, Reverse, Occupied);

NLock2, NFree2, RLock2, RFree2 = Pointif2(Normal, Reverse, Occupied);

NLock3, NFree3, RLock3, RFree3 = Point(Normal, Reverse, Occupied);

NLock4, NFree4, RLock4, RFree4 = Pointif(Normal, Reverse, Occupied);



102 Chapter B Concrete Railway Model

Equivalent =((NLock1 and NLock2) or (not NLock1 and not NLock2)) and

((NFree1 and NFree2) or (not NFree1 and not NFree2)) and

((RFree1 and RFree2) or (not RFree1 and not RFree2)) and

((RLock1 and RLock2) or (not RLock1 and not RLock2));

Equivalent2 = true -> ((NLock1 and NLock3) or (not NLock1 and not NLock3)) and

((NFree1 and NFree3) or (not NFree1 and not NFree3)) and

((RFree1 and RFree3) or (not RFree1 and not RFree3)) and

((RLock1 and RLock3) or (not RLock1 and not RLock3));

Equivalent3 = true -> ((NLock2 and NLock4) or (not NLock2 and not NLock4)) and

((NFree2 and NFree4) or (not NFree2 and not NFree4)) and

((RFree2 and RFree4) or (not RFree2 and not RFree4)) and

((RLock2 and RLock4) or (not RLock2 and not RLock4));

tel

B.2 Signals

Signals were modelled using the finite state machines in SCADE . The signals and the aspects
they contain were modelled separately. A signal can be though of as a device which controls
the aspects it contains. They have an Initial state in which the the red aspect is driven.
Subsequent states depend on the value of the inputs.

node Light3Aspect(Red, White , Green: bool)

returns(LightsSet, R_O_D , W_O_D, G_O_D

: bool)

var

G_O_A, G_O_R, W_O_A, W_O_R, R_O_A, R_O_R,

G_I_A, G_I_D, G_I_R, W_I_A, W_I_D, W_I_R, R_I_A, R_I_D, R_I_R,

G_S_A, G_S_D, G_S_R, W_S_A, W_S_D, W_S_R, R_S_A, R_S_D, R_S_R : bool;

let

G_S_A = false -> (pre G_I_A);

G_S_D = false -> (pre G_I_D);

G_S_R = false -> (pre G_I_R);

W_S_A = false -> (pre W_I_A);

W_S_D = false -> (pre W_I_D);

W_S_R = false -> (pre W_I_R);



B.2 Signals 103

R_S_A = false -> (pre R_I_A);

R_S_D = false -> (pre R_I_D);

R_S_R = false -> (pre R_I_R);

automaton

initial state INITIALISE

let

G_I_A = false;

G_I_D = false;

G_I_R = false;

W_I_A = false;

W_I_D = false;

W_I_R = false;

R_I_A = true;

R_I_D = true;

R_I_R = false;

LightsSet = false;

tel

until

if (R_O_A and R_O_D and Red) resume RED;

if (R_O_A and R_O_D and White) resume WHITE;

if (R_O_A and R_O_D and Green) resume GREEN;

state RED

let

automaton

initial state SETAVAIL

unless

if (R_S_A and not R_S_D) resume TRANSITIONSTATE;

let

G_I_A = G_S_A;

G_I_D = G_S_D;

G_I_R = G_S_R;

W_I_A = W_S_A;

W_I_D = W_S_D;

W_I_R = W_S_R;

R_I_A = true;

R_I_D = R_S_D;

R_I_R = R_S_R;

LightsSet = false;

tel

state TRANSITIONSTATE

unless

if (R_S_A and R_S_D) resume LIGHTSSET;

let



104 Chapter B Concrete Railway Model

G_I_A = G_S_A;

G_I_D = false;

G_I_R = G_S_R;

W_I_A = W_S_A;

W_I_D = false;

W_I_R = W_S_R;

R_I_A = true;

R_I_D = true;

R_I_R = R_S_R;

LightsSet = false;

tel

state LIGHTSSET

let

G_I_A = false;

G_I_D = false;

G_I_R = G_S_R;

W_I_A = false;

W_I_D = false;

W_I_R = W_S_R;

R_I_A = true;

R_I_D = true;

R_I_R = R_S_R;

LightsSet = true;

tel

returns .. ;

tel

until

if (Green and LightsSet) resume GREEN;

if (White and LightsSet) resume WHITE;

state WHITE

let

automaton

initial state SETAVAIL

unless

if (W_S_A and not W_S_D) resume TRANSITIONSTATE;

let

G_I_A = G_S_A;

G_I_D = G_S_D;

G_I_R = G_S_R;

W_I_A = true;



B.2 Signals 105

W_I_D = G_S_D;

W_I_R = W_S_R;

R_I_A = R_S_A;

R_I_D = R_S_D;

R_I_R = R_S_R;

LightsSet = false;

tel

state TRANSITIONSTATE

unless

if (R_S_A and R_S_D) resume LIGHTSSET;

let

G_I_A = G_S_A;

G_I_D = false;

G_I_R = G_S_R;

W_I_A = true;

W_I_D = true;

W_I_R = W_S_R;

R_I_A = R_S_A;

R_I_D = false;

R_I_R = R_S_R;

LightsSet = false;

tel

state LIGHTSSET

let

G_I_A = false;

G_I_D = false;

G_I_R = G_S_R;

W_I_A = true;

W_I_D = true;

W_I_R = W_S_R;

R_I_A = false;

R_I_D = false;

R_I_R = R_S_R;

LightsSet = true;

tel

returns .. ;

tel

until

if ((Red and LightsSet)or (not Red and not White

and not Green and LightsSet)) resume RED;

if (Green and LightsSet) resume GREEN;

state GREEN



106 Chapter B Concrete Railway Model

let

automaton

initial state SETAVAIL

unless

if (R_S_A and not R_S_D) resume TRANSITIONSTATE;

let

G_I_A = true;

G_I_D = G_S_D;

G_I_R = G_S_R;

W_I_A = W_S_A;

W_I_D = W_S_D;

W_I_R = W_S_R;

R_I_A = R_S_A;

R_I_D = R_S_D;

R_I_R = R_S_R;

LightsSet = false;

tel

state TRANSITIONSTATE

unless

if (R_S_A and R_S_D) resume LIGHTSSET;

let

G_I_A = true;

G_I_D = true;

G_I_R = G_S_R;

W_I_A = W_S_A;

W_I_D = false;

W_I_R = W_S_R;

R_I_A = R_S_A;

R_I_D = false;

R_I_R = R_S_R;

LightsSet = false;

tel

state LIGHTSSET

let

G_I_A = true;

G_I_D = true;

G_I_R = G_S_R;

W_I_A = false;

W_I_D = false;

W_I_R = W_S_R;

R_I_A = false;

R_I_D = false;

R_I_R = R_S_R;



B.2 Signals 107

LightsSet = true;

tel

returns .. ;

tel

until

if ((Red and LightsSet) or

(not Red and not White and not Green and LightsSet )) resume RED;

if (White and LightsSet) resume WHITE;

returns .. ;

G_O_A, G_O_D, G_O_R = SignalAspect(G_I_A , G_I_D , G_I_R);

W_O_A, W_O_D, W_O_R = SignalAspect(W_I_A , W_I_D , W_I_R);

R_O_A, R_O_D, R_O_R = SignalAspect(R_I_A , R_I_D , R_I_R);

-- Safety Conditions for a 3 Aspect Signal

-- ConLight = not (G_O_D and W_O_D or

-- G_O_D and R_O_D or W_O_D and R_O_D);

-- Onelight = G_O_D or W_O_D or R_O_D;

tel

node Light2Aspect(Red,Green: bool)

returns(LightsSet, R_O_D, G_O_D

: bool)

var

G_O_A, G_O_R, R_O_A, R_O_R,

G_I_A, G_I_D, G_I_R, R_I_A, R_I_D, R_I_R,

G_S_A, G_S_D, G_S_R, R_S_A, R_S_D, R_S_R : bool;

let

G_S_A = false -> (pre G_I_A);

G_S_D = false -> (pre G_I_D);

G_S_R = false -> (pre G_I_R);

R_S_A = false -> (pre R_I_A);

R_S_D = false -> (pre R_I_D);

R_S_R = false -> (pre R_I_R);



108 Chapter B Concrete Railway Model

automaton

initial state INITIALISE

let

G_I_A = false;

G_I_D = false;

G_I_R = false;

R_I_A = true;

R_I_D = true;

R_I_R = false;

LightsSet = false;

tel

until

if (R_O_A and R_O_D and Red) resume RED;

if (R_O_A and R_O_D and Green) resume GREEN;

state RED

let

automaton

initial state SETAVAIL

unless

if (R_S_A and not R_S_D) resume TRANSITIONSTATE;

let

G_I_A = G_S_A;

G_I_D = G_S_D;

G_I_R = G_S_R;

R_I_A = true;

R_I_D = R_S_D;

R_I_R = R_S_R;

LightsSet = false;

tel

state TRANSITIONSTATE

unless

if (R_S_A and R_S_D) resume LIGHTSSET;

let

G_I_A = G_S_A;

G_I_D = false;

G_I_R = G_S_R;

R_I_A = true;

R_I_D = true;

R_I_R = R_S_R;

LightsSet = false;

tel

state LIGHTSSET



B.2 Signals 109

let

G_I_A = false;

G_I_D = false;

G_I_R = G_S_R;

R_I_A = true;

R_I_D = true;

R_I_R = R_S_R;

LightsSet = true;

tel

returns .. ;

tel

until

if (Green and LightsSet) resume GREEN;

state GREEN

let

automaton

initial state SETAVAIL

unless

if (R_S_A and not R_S_D) resume TRANSITIONSTATE;

let

G_I_A = true;

G_I_D = G_S_D;

G_I_R = G_S_R;

R_I_A = R_S_A;

R_I_D = R_S_D;

R_I_R = R_S_R;

LightsSet = false;

tel

state TRANSITIONSTATE

unless

if (R_S_A and R_S_D) resume LIGHTSSET;

let

G_I_A = true;

G_I_D = true;

G_I_R = G_S_R;

R_I_A = R_S_A;

R_I_D = false;

R_I_R = R_S_R;

LightsSet = false;

tel

state LIGHTSSET



110 Chapter B Concrete Railway Model

let

G_I_A = true;

G_I_D = true;

G_I_R = G_S_R;

R_I_A = false;

R_I_D = false;

R_I_R = R_S_R;

LightsSet = true;

tel

returns .. ;

tel

until

if ((Red and LightsSet) or

(not Red and not Green and LightsSet )) resume RED;

returns .. ;

G_O_A, G_O_D, G_O_R = SignalAspect(G_I_A , G_I_D , G_I_R);

R_O_A, R_O_D, R_O_R = SignalAspect(R_I_A , R_I_D , R_I_R);

-- ConLight = not (G_O_D and R_O_D);

-- Onelight = G_O_D or R_O_D;

Currently the fixed red constantly outputs a boolean stream containing the value true. Further
behaviour could be modelled at a later stage such as failure and reporting.

node FixedRed()

returns(Red : bool)

var

let

Red = true;

tel

The following is the SCADE model for a signal aspect.

node SignalAspect(a,d,r : bool) returns (Avail, Driven, Report: bool)

let

automaton

initial state STATE_1



B.2 Signals 111

unless

if (not a) restart STATE_5;

if (d) restart STATE_2;

if (r) restart STATE_4;

let

Avail = true;

Driven = false;

Report = false;

tel

state STATE_2

unless

if (not d) restart STATE_1;

if (not a) restart STATE_6;

if (r) restart STATE_3;

let

Avail = true;

Driven = true;

Report = false;

tel

state STATE_3

unless

if (not a) restart STATE_8;

if (not d) restart STATE_4;

if (not r) restart STATE_2;

let

Avail = true;

Driven = true;

Report = true;

tel

state STATE_4

unless

if (not a) restart STATE_7;

if (d) restart STATE_3;

if (not r) restart STATE_1;

let



112 Chapter B Concrete Railway Model

Avail = true;

Driven = false;

Report = true;

tel

state STATE_5

unless

if (a) restart STATE_1;

if (r) restart STATE_7;

let

Avail = false;

Driven = false;

Report = false;

tel

state STATE_6

unless

if (a) restart STATE_2;

if (r) restart STATE_8;

let

Avail = false;

Driven = true;

Report = false;

tel

state STATE_7

unless

if (a) restart STATE_4;

if (not r) restart STATE_5;

let

Avail = false;

Driven = false;

Report = true;

tel



B.3 Route Controller 113

state STATE_8

unless

if (a) restart STATE_3;

if (not r) restart STATE_6;

let

Avail = false;

Driven = true;

Report = true;

tel

returns .. ;

-- AspectSafe = true -> Avail or pre Avail or

(not Avail and not pre Avail and

(not Driven and not pre Driven) or (Driven and pre Driven));

tel

B.3 Route Controller

node RouteController(v1204_1_R, v1204_2_R, v1206_R, v1205_R, v1203_R, v1201_R,

v1204_1_RS, v1204_2_RS, v1206_RS, v1205_RS, v1203_RS, v1201_RS : bool)

returns (v1204_1_A, v1204_2_A, v1206_A, v1205_A, v1203_A , v1201_A,

v1204_1_C, v1204_2_C, v1206_C, v1205_C, v1203_C, v1201_C,

v1204_1_S, v1204_2_S, v1206_S, v1205_S, v1203_S, v1201_S,

ConNP1, ConNP2, ConNP3, ConNP4 , ConNP5

: bool)

let

-- automaton for conflicting routes

automaton

initial state INIT

unless

if (v1204_1_R) restart ROUTESET2;

if (v1204_2_R) restart ROUTESET1;

if (v1206_R) restart ROUTESET1;

if (v1205_R) restart ROUTESET3;



114 Chapter B Concrete Railway Model

let

-- All routes are available initially

v1204_1_A = true ;

v1204_2_A = true ;

v1206_A = true ;

v1205_A = true ;

-- No routes have been called in the intial state

v1204_1_C = false ;

v1204_2_C = false ;

v1206_C = false ;

v1205_C = false ;

-- No routes are selected in the intial state

v1204_1_S = false ;

v1204_2_S = false ;

v1206_S = false ;

v1205_S = false ;

tel

state ROUTESET1

unless

if (not v1206_R and not v1204_1_R) restart INIT;

let

--

v1204_1_A = if (v1204_2_R) then true else false;

v1204_2_A = false ;

v1206_A = if (v1206_R) then true else false;

v1205_A = false ;

-- The requested route is called

v1204_1_C = if (v1204_2_R) then true else false;

v1204_2_C = false ;

v1206_C = if (v1206_R) then true else false;

v1205_C = false ;

-- if statement for 1206

v1206_S = if (not v1206_RS) then false else true;

-- if statement for 1204_2



B.3 Route Controller 115

v1204_1_S = if (not v1204_2_RS) then false else true;

v1204_2_S = false ;

v1205_S = false ;

tel

state ROUTESET2

unless

if (not v1204_2_R) restart INIT;

let

v1204_1_A = false ;

v1204_2_A = true ;

v1206_A = false ;

v1205_A = false ;

-- The requested route is called

v1204_1_C = false ;

v1204_2_C = true ;

v1206_C = false ;

v1205_C = false ;

-- automaton for 1204_1

automaton

initial state NOT_SEL

unless

if (v1204_2_RS) restart SEL;

let

v1204_2_S = false;

tel

state SEL

let

v1204_2_S = true;

tel

returns .. ;



116 Chapter B Concrete Railway Model

v1206_S = false;

v1204_1_S = false;

v1205_S = false;

tel

state ROUTESET3

unless

if (not v1205_R) restart INIT;

let

v1204_1_A = false ;

v1204_2_A = false ;

v1206_A = false ;

v1205_A = true ;

-- The requested route is called

v1204_1_C = false ;

v1204_2_C = false ;

v1206_C = false ;

v1205_C = true ;

-- automaton for 1205

automaton

initial state NOT_SEL

unless

if (v1205_RS) restart SEL;

let

v1205_S = false;

tel

state SEL

let

v1205_S = true;

tel

returns .. ;

v1204_1_S = false;

v1204_2_S = false;



B.3 Route Controller 117

v1206_S = false;

tel

returns .. ;

--- Routes with no conflicts are always available

v1203_A = true;

v1201_A = true;

-- flows for for route 1203

v1203_C = if (v1203_R) then true else false;

v1203_S = if (v1203_RS) then true else false;

-- flows for route 1201

v1201_C = if(v1201_R) then true else false;

v1201_S = if (v1201_RS) then true else false;

--Safety Conditions for Conflicting Routes

ConNP1 = not( v1204_1_S and v1205_S);

ConNP2 = not( v1204_1_S and v1204_2_S);

ConNP3 = not( v1204_2_S and v1205_S);

ConNP4 = not( v1204_2_S and v1206_S);

ConNP5 = not( v1206_S and v1205_S);

tel



118 Chapter B Concrete Railway Model

B.4 Railway Segment Model

The following contains the SCADE model for concrete railway example. Below is a list of
variable suffixes.

• Track Segments

– TO : Track Occupied

– O : Train Out

– CR : Crash

• Signals

– RED : Red aspect is showing on the signal

– GRE : Green aspect is showing on the signal

– WHI : White aspect is showing on the signal

– LS : Lights set

• – Points

– NL : Points locked normal

– RL : Points locked reverse

– NF : Points free and normal

– RF : Points Free and reverse

• Routes

– R: Route Requested

– RS : Route Selected

– RC : Route Called

– S : Route Set

– A : Available

– DP : Drive points , caused by a route being called.

– DR : Drive Red

– DG :

– DW :

– WTC : The track segments required for a white light are clear.

– GTC : The track segments required for a green light are clear.

Each track component has a unique identifier.



B.4 Railway Segment Model 119

Component Type Component Identifiers

Track 1001, 1002, 1003, 1004, 1005,
1006, 1007, 1008, 1009, 1010,
1011

Points 1101, 1102, 1103, 1104

Signals 1201, 1202, 1203, 1204, 1205,
1206, 1207 , 1208, 1209, 1210

node AbstractRailway(v1204_1_R, v1204_2_R, v1206_R , v1205_R,

v1203_R, v1201_R, TrainIn : bool)

returns(sPLRS_1206, sPLRS_1204_1, sPLRS_1204_2,

sPLRS_1205, sNPA_1206, sNPA_1204, sNPA_1205, sNPATR_1206,

sNPATR_1204_1, sNPATR_1204_2, sNPATR_1205, nocrash, sTI1001 : bool)

var

v1205_WTC, v1204_1_WTC, v1204_2_WTC, v1206_WTC, v1203_WTC , v1201_WTC : bool;

v1205_GTC, v1204_1_GTC, v1204_2_GTC, v1206_GTC, v1203_GTC , v1201_GTC : bool;

v1204_1_A, v1204_2_A,

v1206_A, v1205_A, v1204_1_S, v1204_2_S, v1206_S, v1205_S ,

v1101_NF , v1101_NL , v1101_RF, v1101_RL, v1102_NF , v1102_NL ,

v1102_RF, v1102_RL ,v1103_NF, v1103_NL, v1103_RF , v1103_RL,

v1104_NF, v1104_NL, v1104_RF , v1104_RL,

v1204_1_RS, v1204_1_DP, v1204_1_DG , v1204_1_DW , v1204_1_DR,

v1204_2_RS , v1204_2_DP, v1204_2_DG , v1204_2_DW , v1204_2_DR,

v1206_RS , v1206_DP, v1206_DG, v1206_DW, v1206_DR,

v1205_RS , v1205_DP, v1205_DG , v1205_DW , v1205_DR,

v1203_RS , v1203_DP, v1203_DG, v1203_DW, v1203_DR,

v1201_RS , v1201_DP, v1201_DG, v1201_DW, v1201_DR,

v1204_2_RC, v1204_LS, v1206_LS, v1205_RC, v1205_LS, v1203_RC,

v1203_LS, v1201_RC, v1201_LS, v1201_RED, v1203_RED, v1204_RED,

v1205_RED, v1206_RED, v1204_1_RC, v1206_RC, v1203_S,

v1201_S, v1203_A, v1201_A, v1201_GRE, v1201_WHI,

v1001_TO , v1001_O, v1002_TO , v1002_O, v1003_TO, v1003_O,

v1204_GRE, v1004_TO , v1004_O_2,

v1006_TO, v1006_O, v1205_GRE, v1005_TO, v1005_O_2,

v1007_TO, v1007_O, v1008_TO, v1008_O, v1009_TO, v1009_O,

v1010_TO, v1010_O_2 , v1010_O_3, v1011_TO, v1011_O,

v1009_O_2, v1004_O, v1010_O, v1005_O, v1203_WHI, v1203_GRE, v1206_GRE,

v8255_1_D, v1208_D, v1209_D, v8257_2_D ,

v1001_CR, v1002_CR, v1003_CR, v1004_CR, v1011_CR, v1005_CR,

v1006_CR, v1010_CR, v1009_CR, v1008_CR, v1007_CR , v1005_O_3, v1004_O_3, v1009_O_3

: bool;

let



120 Chapter B Concrete Railway Model

-- East Bound Line

-- Track 1001

v1001_TO , v1001_O, v1001_CR =

Track_Segment1( TrainIn, v1201_RED, v1201_GRE, v1201_WHI );

-- Track 1002

-- Since there is no light on this segment

-- any train can proceed to the next piece of track

-- hence green and white are set to true untill i find a way of modelling this.

v1002_TO , v1002_O, v1002_CR =

Track_Segment1(v1001_O , false, true , true);

-- Track 1003

v1003_TO, v1003_O, v1003_CR =

Track_Segment1(v1002_O, v1204_RED, v1204_GRE, false);

-- Track 1004

v1004_TO, v1004_O , v1004_O_2, v1004_O_3, v1004_CR =

Track_Segment3(v1003_O, v1009_O_2 , v1005_O_3,

false, true, false, v1101_NL , v1101_RL);

-- Track 1005

v1005_TO, v1005_O, v1005_O_2 , v1005_O_3, v1005_CR =

Track_Segment3(v1006_O, false, v1004_O_3,

false , true, false , v1103_NL , v1103_RL);

-- Track 1006

v1006_TO, v1006_O, v1006_CR = Track_Segment1(v1005_O, v1205_RED, v1205_GRE, false);

-- West Bound Line

-- Track 1007

v1007_TO, v1007_O, v1007_CR = Track_Segment1(v1008_O, false, true, false);

-- Track 8002

-- Unclear if this track segment is part of the scheme.

-- v8002_TO, v8002_O, v8002_CR =

-- Track_Segment1(v1007_O, v1202_RED , v1202_GRE, v1202_WHI);

-- Track 1008

v1008_TO, v1008_O, v1008_CR =

Track_Segment1(v1009_O_3, v1203_RED, v1203_GRE , v1203_WHI);

-- Track 1009



B.4 Railway Segment Model 121

v1009_TO, v1009_O, v1009_O_2 , v1009_O_3, v1009_CR =

Track_Segment3( v1010_O, v1004_O_2,

false , false , true, false, v1102_NL , v1102_RL);

-- Track 1010

v1010_TO, v1010_O, v1010_O_2 , v1010_O_3, v1010_CR =

Track_Segment3(v1009_O, v1005_O_2,

v1011_O , false, true, false, v1104_NL, v1104_RL);

-- Track 1011

v1011_TO, v1011_O, v1011_CR = Track_Segment1(v1010_O_3, v1206_RED, v1206_GRE, false);

-- Points

-- Left Points 1101/2

v1101_NF , v1101_NL , v1101_RF, v1101_RL =

Point( (v1204_1_DP or v1205_DP or v1205_DP), v1204_2_DP, v1004_TO );

v1102_NF , v1102_NL , v1102_RF, v1102_RL =

Point( (v1204_1_DP or v1205_DP or v1205_DP), v1204_2_DP, v1009_TO );

-- Right Points 1103/4

v1103_NF, v1103_NL, v1103_RF , v1103_RL =

Point((v1204_1_DP or v1204_2_DP or v1206_DP), v1205_DP, v1005_TO);

v1104_NF, v1104_NL, v1104_RF , v1104_RL =

Point((v1204_1_DP or v1204_2_DP or v1206_DP), v1205_DP, v1010_TO);

-- Routes

-- Route 1204(1) (Ends 8255)

-- Locks Points Normal

-- 1101/2

-- 1103/4

-- Tracks Clear Green : 1004, 1005 , 1006

-- Tracks Clear White

v1204_1_WTC = false;

v1204_1_GTC = v1004_TO and v1005_TO and v1006_TO;

v1204_1_RS, v1204_1_DP, v1204_1_DG , v1204_1_DW , v1204_1_DR =

Route(v1204_1_RC, (false -> pre v1204_1_S),

(false -> pre v1101_NL and pre v1102_NL and pre v1103_NL and pre v1104_NL),

v1204_LS, v1204_2_WTC , v1204_2_GTC);



122 Chapter B Concrete Railway Model

-- Route 1204(2) (Ends 8257)

-- Locks Points Normal

-- 1103/4

-- Locks Points Reverse

-- 1101/2

-- Tracks Clear Green : 1004 , 1009 , 1010 ,1011

-- Tracks Clear White

v1204_2_WTC = false;

v1204_2_GTC = v1004_TO and v1009_TO and v1010_TO and v1011_TO;

v1204_2_RS , v1204_2_DP, v1204_2_DG , v1204_2_DW , v1204_2_DR =

Route( v1204_2_RC, (false -> pre v1204_2_S) ,

(false -> pre v1101_RL and pre v1102_RL and pre v1103_NL and pre v1104_NL),

v1204_LS, v1204_2_WTC, v1204_2_GTC);

-- Route 1206 (Ends A1203)

-- Locks Points Normal

-- 1103/4

-- 1101/2

-- Tracks Clear Green : 1010 , 1009 , 1008 , 1007

-- Tracks Clear White :

v1206_WTC = false;

v1206_GTC = v1010_TO and v1009_TO and v1008_TO and v1007_TO;

v1206_RS , v1206_DP, v1206_DG, v1206_DW, v1206_DR =

Route(v1204_2_RC, (false -> pre v1204_2_S) ,

(false -> pre v1101_NL and pre v1102_NL and pre v1103_NL and pre v1104_NL),

v1206_LS, v1206_WTC, v1206_GTC);

-- Route 1205 (Ends A1203)

-- Locks Points Normal

-- 1101/2

-- Locks Points Reverse

-- 1103/4

-- Tracks Clear Green : 1005 , 1010 , 1009 , 1008 , 1007

-- Tracks Clear White

v1205_WTC = false;

v1205_GTC = v1005_TO and v1010_TO and v1009_TO and v1008_TO and v1007_TO;

v1205_RS , v1205_DP, v1205_DG , v1205_DW , v1205_DR =

Route(v1205_RC, (false -> pre v1205_S) ,

(false -> pre v1101_NL and pre v1102_NL and pre v1103_RL and pre v1104_RL),

v1205_LS, v1205_WTC, v1205_GTC);



B.4 Railway Segment Model 123

-- Routes Without Points

-- Route 1203

-- Tracks Clear Green : 1007, 8002

-- Tracks Clear White : 8004

v1203_WTC = false;

v1203_GTC = v1007_TO;

v1203_RS , v1203_DP, v1203_DG, v1203_DW, v1203_DR

= Route(v1203_RC,

(false -> pre v1203_S), true, v1203_LS, v1203_WTC , v1203_GTC );

-- Route 1201

-- Tracks Clear Green : 1002

-- Tracks Clear White : 1003

v1201_GTC = v1002_CR;

v1201_WTC = v1003_CR;

v1201_RS , v1201_DP, v1201_DG, v1201_DW, v1201_DR =

Route(v1201_RC,(false -> pre v1201_S), true, v1201_LS, v1201_WTC , v1201_GTC);

-- Signals

-- A1201 (3 Aspect)

v1201_LS , v1201_RED, v1201_WHI, v1201_GRE =

Light3Aspect(v1201_DR, v1201_DW, v1201_DG);

-- A1202 (3 Aspect)

-- There is no control table entry for this signal

-- it may not actually be part of the scheme.

--v1202_LS , v1202_RED, v1202_WHI, v1202_GRE =

-- Light3Aspect(v1202_DR , v1202_DW, v1202_DG);

-- A1203 (3 Aspect)

v1203_LS , v1203_RED, v1203_WHI, v1203_GRE =

Light3Aspect(v1203_DR , v1203_DW, v1203_DG);

-- 1204 (2 Aspect with Route Indicator and RS)

v1204_LS , v1204_RED, v1204_GRE = Light2Aspect(v1204_2_DR or

v1204_1_DR , ((v1204_1_DG and v1204_1_DW) or (v1204_2_DG and v1204_2_DW) ));

-- 1205 (2 Aspect with RS)

v1205_LS , v1205_RED , v1205_GRE =

Light2Aspect(v1205_DR, (v1205_DG and v1205_DW ));



124 Chapter B Concrete Railway Model

-- 1206 (2 Aspect with RS)

v1206_LS , v1206_RED , v1206_GRE =

Light2Aspect(v1206_DR, (v1206_DG and v1206_DW ));

-- Fixed Reds 1207 , 1208 , 1209 , 1210

v1207_D = FixedRed();

v1208_D = FixedRed();

v1209_D = FixedRed();

v1210_D = FixedRed();

v1204_1_A, v1204_2_A, v1206_A, v1205_A, v1203_A, v1201_A,

v1204_1_RC, v1204_2_RC, v1206_RC, v1205_RC, v1203_RC,

v1201_RC, v1204_1_S, v1204_2_S, v1206_S, v1205_S, v1203_S, v1201_S

= RouteController(v1204_1_R, v1204_2_R, v1206_R , v1205_R, v1203_R,

v1201_R , v1204_1_RS, v1204_2_RS, v1206_RS , v1205_RS, v1203_RS , v1201_RS);

-- Safety Conditions

-- Points Locked when Route Set

sPLRS_1206 = (not v1206_RS or (v1101_NL and v1102_NL and v1103_NL and v1104_NL));

sPLRS_1204_1 = (not v1204_1_RS or (v1101_NL and v1102_NL and v1103_NL and v1104_NL));

sPLRS_1204_2 = (not v1204_2_RS or (v1101_RL and v1102_RL and v1103_NL and v1104_NL));

sPLRS_1205 = ( not v1205_RS or (v1101_NL and v1102_NL and v1103_RL and v1104_RL));

-- No proceed aspect if route not set

sNPA_1206 = (not v1206_GRE or v1206_RS);

sNPA_1204 = (not v1204_GRE or #(v1204_1_RS , v1204_2_RS));

sNPA_1205 = (not v1205_GRE or v1205_RS);

-- No proceed aspect if train in route

sNPATR_1206 = (not v1206_GRE or (v1010_TO and v1009_TO and v1008_TO and v1007_TO));

sNPATR_1204_1 = (not (v1204_GRE and v1204_1_RS) or

(v1004_TO and v1005_TO and v1006_TO));

sNPATR_1204_2 = (not (v1204_GRE and v1204_2_RS) or

(v1004_TO and v1009_TO and v1010_TO and v1011_TO));

sNPATR_1205 = (not v1205_GRE or

(v1005_TO and v1010_TO and v1009_TO and v1008_TO and v1007_TO));

-- Crashes can not occur

nocrash = not v1004_CR;



B.5 Modular Verification 125

-- Trains coming into a piece of track should occupy it

sTI1001 = true -> (not pre TrainIn) or v1001_TO;

tel

B.5 Modular Verification

B.5.0.1 Topological Verifcation

node ModularVerification1(TrainIn : bool)

returns (sTrainIn, sTrainOcc, vTRACK1_TO , vTRACK1_O, vTRACK1_CR ,

vTRACK2_TO , vTRACK2_O, vTRACK_CR : bool)

let

vTRACK1_TO , vTRACK1_O, vTRACK1_CR = Track_Segment1( TrainIn, false, false, true );

vTRACK2_TO , vTRACK2_O, vTRACK_CR = Track_Segment1(vTRACK1_O , false, false , true);

-- Below are the safety conditions to verify that

-- two segments of track behave properly when connected together

-- Trains Coming into a piece of track should occupy it

sTrainIn = true -> (not pre TrainIn) or vTRACK1_TO;

-- If a train leaves a piece of track it should cease

-- to occupy this piece of track and occupy the next

sTrainOcc = true -> (not pre vTRACK1_O) or

(vTRACK2_TO and (not pre TrainIn or vTRACK1_TO));

tel

node ModularVerification2(TrainIn, Testpoint: bool)

returns (vTRACK_TO, vTRACK_O, vTRACK_O_2 , vTRACK_O_3, vTRACK_CR, sTP : bool)

let

vTRACK_TO, vTRACK_O, vTRACK_O_2 , vTRACK_O_3, vTRACK_CR =



126 Chapter B Concrete Railway Model

Track_Segment3(TrainIn , false,

false , false , true, false , Testpoint , not Testpoint);

-- Points must influence which direction the train goes on the track.

sTP = not vTRACK_O_2 or not Testpoint and not vTRACK_O_3 or Testpoint;

tel

node ModularVerification3(TrainIn, RED , GREEN, WHITE : bool)

returns ( vTRACK1_TO , vTRACK1_O, vTRACK1_CR ,sRed : bool)

let

vTRACK1_TO , vTRACK1_O, vTRACK1_CR = Track_Segment1( TrainIn, RED, GREEN, WHITE );

-- Trains dont leave the track if a Red light is showing

sRed = not RED or vTRACK1_TO;

tel

B.5.1 Route Verification

– Route Verification

node ModularVerification4(RouteSet, PointsLocked, LightsSet,

W_track_clear, G_track_clear : bool)

returns(RouteSelected , DrivePoints, DriveGreen ,

DriveWhite , DriveRed, SafetyRed : bool)

let

-- Route(RouteCall, RouteSet, PointsLocked, LightsSet, W_track_clear, G_track_clear)

RouteSelected , DrivePoints, DriveGreen , DriveWhite , DriveRed =

Route(false, RouteSet, PointsLocked, LightsSet, W_track_clear, G_track_clear);

-- If the route is never called The red light and only the red light should be driven.

SafetyRed = DriveRed and not DriveGreen and not DriveWhite;

tel



B.5 Modular Verification 127

node ModularVerification5(RouteCall, RouteSet , PointsLocked , LightsSet,

W_track_clear , G_track_clear : bool)

returns( RouteSelected , DrivePoints, DriveGreen ,

DriveWhite , DriveRed, SafetyRed : bool)

let

-- If the Route is called by but the track is not clear

-- then the red aspect should be driven.

-- There are two possibilities for the formalisation of this safety condition.

-- RouteSelected , DrivePoints, DriveGreen , DriveWhite , DriveRed =

-- Route(RouteCall, RouteSet , PointsLocked , LightsSet , false , false );

-- SafetyRed = not RouteCall or (DriveRed and not DriveGreen and not DriveWhite);

RouteSelected , DrivePoints, DriveGreen , DriveWhite , DriveRed =

Route(RouteCall, RouteSet , PointsLocked ,

LightsSet , W_track_clear , G_track_clear );

SafetyRed = not( RouteCall and not W_track_clear and not G_track_clear)or

(DriveRed and not DriveGreen and not DriveWhite);

tel

node ModularVerification6(RouteCall, RouteSet , PointsLocked , LightsSet : bool)

returns(RouteSelected , DrivePoints, DriveGreen , DriveWhite ,

DriveRed, SafetyCond : bool)

let

RouteSelected , DrivePoints, DriveGreen , DriveWhite , DriveRed =

Route(RouteCall, true , PointsLocked , LightsSet , true , true );

-- If the track is clear and the Route is set then the Green light should show.

SafetyCond = true -> (not pre RouteCall) or

DriveGreen and not DriveWhite and not DriveRed;

tel

node ModularVerification7(RouteCall, RouteSet , PointsLocked , LightsSet : bool)

returns(RouteSelected , DrivePoints, DriveGreen , DriveWhite ,

DriveRed, SafetyCond : bool)



128 Chapter B Concrete Railway Model

var

foo : bool;

let

foo = false -> if (pre foo or pre RouteCall) then true else false;

RouteSelected , DrivePoints, DriveGreen , DriveWhite , DriveRed =

Route(RouteCall, foo , PointsLocked , LightsSet , true , true );

SafetyCond = true -> (not pre RouteCall) or

DriveGreen and not DriveWhite and not DriveRed;

tel


