The British Colloquium for Theoretical Computer Science (BCTCS) is an annual event for UK-based researchers in theoretical computer science. A central aspect of BCTCS is the training of PhD students, providing an environment for students to gain experience in presenting their work, to broaden their outlook on the subject, and to benefit from contact with established researchers. The scope of the colloquium includes all aspects of theoretical computer science, including automata theory, algorithms, complexity theory, semantics, formal methods, concurrency, types, languages and logics.

BCTCS 2020 is the 36th conference in the series and is being held together with a workshop organized by AlgoUK, a network for the UK’s algorithms and complexity research community.

Swansea University

Swansea University’s history goes back to 1920. Its first campus, the Singleton Campus, is located in a lovely setting by the sea, right next to one of the biggest parks in Swansea. The second campus, the Bay Campus, was opened in 2015. Lying between the Bay Campus and Neath Estuary is our very own nature reserve, Crymlyn Burrows, which we certainly recommend visiting during your stay. The dunes, saltmarsh and beach are protected as a Site of Special Scientific Interest (SSSI).

In 2018 the doors to the Computational Foundry, the home of the College of Science’s departments of Computer Science and Mathematics, were opened. We are proud to host this year’s the BCTCS event here.
WiFi

Get Started – Connect to ‘SwanseaUni-Visitors’

The first thing you need to do is view the list of available wireless networks on your device and then connect it to the open SwanseaUni-Visitors SSID. Once you are connected you should be prompted to sign-in. If you are not prompted, open a web browser and type in the URL of https://socialwifi.swansea.ac.uk

Log in

After you have connected, you need to log in using either Facebook credentials or your email address. Once you are logged in the window may close, or you will be redirected to the university web site.

Connection restrictions

Once you are connected you are free to use the internet, but there are some restrictions to keep in mind. Adult and inappropriate content is blocked. Connections are limited to 4Mbs per device, and you will be disconnected after 4 hours inactivity.
Programme

Monday 6 April

AlgoUK Session on Railway Verification
Zoom Meeting ID: [151-733-660](https://zoom.us/j/151733660) (Stream A)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker(s)</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>Simon Chadwick (Siemens Rail UK)</td>
<td>Formal Verification - The Journey from Theory towards Practice</td>
</tr>
<tr>
<td>14:40</td>
<td>Anne Haxthausen (Copenhagen)</td>
<td>The RobustRailS Verification Method for Railway Interlocking Systems</td>
</tr>
<tr>
<td>15:20</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>15:40</td>
<td>Jan Peleska (Bremen)</td>
<td>Advances in Railway Control Systems Architectures and Related Challenges for Verification and Validation</td>
</tr>
<tr>
<td>16:20</td>
<td>Bas Luttik (Eindhoven)</td>
<td>Supporting Railway Infrastructure Managers with Formal Models and Analyses</td>
</tr>
<tr>
<td>17:00</td>
<td>Aled Walters (Swansea)</td>
<td>Model-Based Testing of ETCS RBCs</td>
</tr>
<tr>
<td>17:25</td>
<td>Close</td>
<td></td>
</tr>
</tbody>
</table>

Tuesday 7 April

AlgoUK session on Algorithmics
Zoom Meeting ID: [778-265-535](https://zoom.us/j/778265535) (Stream A)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker(s)</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:30</td>
<td>Kristina Vuskovic (Leeds)</td>
<td>The induced disjoint paths problem on (theta, wheel)-free graphs</td>
</tr>
<tr>
<td>10:10</td>
<td>Patrick Totzke (Liverpool)</td>
<td>Playing with counters: how to solve games on infinite arenas</td>
</tr>
<tr>
<td>10:50</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:20</td>
<td>Edith Elkind (Oxford)</td>
<td>Hedonic diversity games</td>
</tr>
<tr>
<td>12:00</td>
<td>MS Ramanujan (Warwick)</td>
<td>Lossy kernelization</td>
</tr>
<tr>
<td>12:40</td>
<td>Break</td>
<td></td>
</tr>
</tbody>
</table>

Contributed Talks 1A: Stable Matching
Zoom Meeting ID: [778-265-535](https://zoom.us/j/778265535) (Stream A)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker(s)</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:10</td>
<td>Frances Cooper (Glasgow)</td>
<td>Algorithms for new types of fair stable matchings</td>
</tr>
<tr>
<td>13:35</td>
<td>Michael McKay (Glasgow)</td>
<td>Stable Roommates with triple rooms under B- and W-preferences</td>
</tr>
</tbody>
</table>
14:00 William Pettersson (Glasgow)
 Preprocessing theory and practice in stable matching problems
14:25 Edwin Lock (Oxford)
 Translating into and from the Product-Mix Auction bidding language
14:50 Break

Contributed Talks 1B: Logic & Semantics
Zoom Meeting ID: 158-206-120 (Stream B)

13:10 Peter D. Mosses (Swansea)
 Towards semantics online
13:35 Andrej Ivaskovic (Cambridge)
 Graded monads in program analysis
14:00 Adam Ó Conghaile (Cambridge)
 Game comonads and generalised quantifiers
14:25 Dan Ward-Williams (Swansea)
 Exploring search characteristics of numeral system encodings
14:50 Break

LMS Keynote Speaker in Discrete Mathematics
Zoom Meeting ID: 778-265-535 (Stream A)

15:15 Robert Constable (Cornell)
 Implementing Elements of Intuitionistic Mathematics in Nuprl

BCTCS Ordinary General Meeting
Zoom Meeting ID: 778-265-535 (Stream A)

16:15 BCTCS Ordinary General Meeting (<20 minutes)

Wednesday 8 April

Contributed Talks 2A: Complexity
Zoom Meeting ID: 120-205-055 (Stream A)

09:20 Pavel Vesely (Warwick)
 Tight Lower Bound for Comparison-Based Quantile Summaries
09:45 Noleen Köhler (Leeds)
 Property Testing of NP-hard Problems
10:10 Oliver Kullmann (Swansea)
 Classifying all minimally unsatisfiable 2-CNFs up to isomorphism
Contributed Talks 2B: Type Theory & Interactive Theorem Proving

Zoom Meeting ID: 841-764-756 (Stream B)

09:20 Olga Petrovska (Swansea)
 Intuitionistic Fixed Point Logic and Program Extraction
09:45 Ahmed Bhayat (Manchester)
 Recent Developments in Higher-Order Theorem Proving
10:10 Anton Setzer (Swansea)
 Did Erik Palmgren Solve a Revised Hilbert’s Program?
10:35 Tom de Jong (Birmingham)
 Constructive domain theory in Univalent Foundations

11:00 Break

Invited Speaker

Zoom Meeting ID: 120-205-055 (Stream A)

11:30 David Manlove (Glasgow)
 Assigning junior doctors to hospitals - what makes it so hard?
12:30 Break

Contributed Talks 3A: Combinatorics and Tools

Zoom Meeting ID: 120-205-055 (Stream A)

13:00 Duncan Adamson (Liverpool)
 Multidimensional Necklaces: Enumeration, Generation, Ranking and Unranking
13:25 Diptapriyo Majumdar (RHUL)
 Parameterized Pre-coloring Extension and List Coloring Problems
13:50 Tobias Rosenberger (Swansea)
 Unbabel your tools: Leveraging SPASS for UML
14:15 Arved Friedemann (Swansea)
 Functional Solving Engines

Contributed Talks 3B: Games, Models and Machine Learning

Zoom Meeting ID: 841-764-756 (Stream B)

13:00 Arno Pauly (Swansea)
 From finite memory determinacy to Nash equilibria
13:25 Tonicha Crook (Swansea)
 The degree of non-computability of Nash equilibria in multiplayer games
13:50 Alex V Berka (Isynchronise)
 The alpha-ram family - bit level models for parallelism and concurrency
14:15 Matthew England (Coventry)
 Machine Learning to Steer Symbolic Computation from its Worst Case Complexity

14:40 Close
Invited talks (abstracts)

Simon Chadwick : Formal Verification - The Journey from Theory towards Practice

This presentation will look at the steps we have taken towards practical verification of railway signalling interlocking logic using formal verification. The theory is well demonstrated, and we have been working on some steps towards a system for use by railway signalling engineers. Some of the issues we will consider: How to convey understanding about formal verification - what is checked, what is not checked; How to express safety properties; How to capture railway geography; How to provide a User Interface; How to present the results; How would formal verification fit within the overall process for interlocking data.

Robert Constable : Implementing elements of intuitionistic mathematics in Nuprl

There is no way to implement all of intuitionistic real analysis or even formalize it. Brouwer, the primary creator of intuitionistic mathematics, knew this and said that a construction of the continuum is inconceivable. We will explain in this lecture why that is so. This is not the case for the Bishop and Bridges account of constructive analysis. Dr. Mark Bickford has implemented significant parts of constructive analysis in Nuprl. It might be possible to implement the entire book. Bishop’s comment on Brouwer’s view is priceless, and perhaps not well known. The lecture will use Bishop’s written remark as motivation and then discuss how we are implementing elements of intuitionistic mathematics in Nuprl.

Edith Elkind : Hedonistic diversity games

We consider a setting where players belong to two types (men and women, vegetarians and carnivores, junior and senior researchers) and need to split into groups, with each player having preferences over the proportion of the two player types in his or her group. We study the problem of finding a stable partition, for several game-theoretic notions of stability; while some of the problems we consider turn out to be polynomial-time solvable, others are NP-hard, in which case we also explore their parameterized complexity.

Cliff Jones : What do we mean by "Formal Methods"?

The dream of “Formal Methods” is that any program should be developed from a mathematically expressed specification, that the resultant program should be written in a language that has a precise semantics and should be translated to machine code by a processor that has been proven to respect that formal semantics - even that the machine instruction set should itself have a formal semantic description and the circuits have been...
proved to reflect that semantic description. There are examples of this ideal but sadly industrial norms are far away from the ideal. The talk will discuss the history, difficulties and successes of the area known as “formal methods”.

Bas Luttik (Eindhoven) : Supporting Railway Infrastructure Managers with Formal Models and Analyses

In this talk, I will discuss our recent experiences with using the mCRL2 toolset - which has a process-algebra based modelling language, a modal mu-calculus-based property language, and an explicit-state model checker - to support two major innovation activities from railway infrastructure managers.

First, there is the EULYNX initiative of the European railway infrastructure managers. The aim of EULYNX is to standardise the interfaces between the interlocking and field elements (signals, points, level crossings); these interface standards are modelled in SysML. In a project funded by the Dutch and German railway infrastructure managers we are translating the SysML models to mCRL2 not only to formally assess the quality of the standard by model checking, but also to facilitate using them for model-based testing of compliance to the standard of delivered components.

Second, in collaboration with the Dutch railway infrastructure manager ProRail we have formally modelled and analysed the ERTMS Hybrid Level 3 principles. These principles facilitate subdividing track sections into virtual subsections, in order to allow multiple trains simultaneously on the same track section, thus increasing capacity. We have plans to support ProRail developers in their further elaboration of the design and implementation of ERTMS Hybrid Level 3.

David Manlove : Assigning junior doctors to hospitals - what makes it so hard?

In many countries, junior doctors are assigned to hospitals via a centralised matching process. Algorithms take as input the preferences of doctors over hospitals and vice versa, and the upper quotas of hospitals (these are the numbers of doctors that each hospital has room for). The algorithms typically produce stable matchings of doctors to hospitals, which guarantee that no doctor and hospital would rather be assigned to one another than to remain with their existing assignee/s (if any). The underlying computational problem has been well studied in its classical form, and fast algorithms are known for finding stable matchings. In this talk we focus on extensions of the classical problem of assigning junior doctors to hospitals that are motivated by practical applications, each of which leads to an NP-hard problem. Variants that we consider include, for example: (i) trading off size with stability, where we seek larger matchings that minimise instability; (ii) allowing ties in the preference lists; (iii) allowing couples to apply jointly to pairs of hospitals that are typically geographically close; (iv) allowing hospitals to have lower quotas as well as upper quotas. In each case we
motivate and define the problem, survey existing algorithmic results and outline some open cases.

Jan Peleska (Bremen) : Advances in Railway Control Systems Architectures and Related Challenges for Verification and Validation

This presentation is about Formal Methods and their practical application in the railway control systems domain. As a starting point, we discuss a new "flavour" of distributed interlocking systems, where the proper interlocking logic is allocated on cloud computers using conventional (i.e. commercial-off-the-shelf) multi-core hardware and operating systems. The servers in the cloud communicate with intelligent track elements over internet connections. Interlocking logic may even be geographically distributed on more than one server farm, introducing a new dimension of fault tolerance. This technology has been announced 2018 by Siemens Mobility, and a first application is expected to become operative this year. We sketch how this architecture results in obvious reliability and availability improvements, but at the same time creates new challenges for comprehensive formal verification of safety properties. At the same time, novel requirements of European railways concerning the autonomous control of rolling stock increase the verification load and its complexity in a significant way. The overall verification challenges may be structured into (a) data validation, (b) safety-related verification of dynamic behaviour, (c) verification of hardware/software integration, and (d) runtime verification. We describe where Formal Methods are already applied today in a successful way and focus on some more specific verification problems requiring further research effort. The material presented here is based on a collaboration between Siemens and Verified Systems International, a company specialised on verification and validation of safety-critical systems.

MS Ramanujan : Lossy Kernelization

Polynomial-time preprocessing is one of the most widely used methods for for tackling NP-hardness in practice, and in the area of kernelization, one has a robust mathematical framework to design and analyze preprocessing algorithms for decision problems. However, the standard notion of a kernelization algorithm does not combine well with approximation algorithms and heuristics, and Lokshtanov et al. (STOC 2017) introduced a notion of "approximate kernelization" to overcome this barrier. In this talk, we will discuss the framework and review some recent results on approximate kernels.

Patrick Totzke : Playing with counters: how to solve games on infinite arenas

I will talk about perfect information zero-sum games played on graphs, which are ubiquitous in formal verification of reactive systems. For instance, solving (i.e., determining the winner of) parity games is equivalent to model checking for modal μ-calculus formulae, which in
turn subsumes both LTL and CTL specifications. Let’s ignore for now that the complexity of solving Parity games remains unknown and instead be greedy and look into more expressive types of games. Moving from finite graphs to infinite ones and introducing randomization allows to study interesting interplay between the structure of the graphs, the complexities of winning strategies, and the decidability/complexity of game solving. It turns out that many interesting generalizations effectively reduce to solving so-called energy games, in which one of the two players simply wants to keep a discrete “energy” level nonnegative. In this talk I will recall historical and recent results on such games played on infinite graphs and point to open problems in the area.

Helen Treharne (Surrey): IoT and Security in Railway Applications

TBA

John Tucker: What did theoretical computer science ever do for software engineering?

Once upon a time, theoretical computer science was described as essentially algorithms and semantics. Semantics grew in response to the need for scientific foundations for programming and software engineering; it did so by largely transforming and applying logical and algebraic ideas to make new formal methods for software development. Theories about programming languages, data types, concurrency, modularity, program specification and verification were created. The talk will discuss some of the problems of programming and software engineering that have stimulated theoretical computer science, and the ways in which the new theories influence modern programming and software engineering.

Kristina Vušković: The induced disjoint paths problem on (theta, wheel)-free graphs

A hole in a graph is a chordless cycle of length at least 4. A theta is a graph formed by three internally vertex-disjoint paths of length at least 2 between the same pair of distinct vertices. A wheel is a graph formed by a hole and a node that has at least 3 neighbors in the hole. In joint work with Trotignon and Radovanović we obtain a decomposition theorem for the class of graphs that do not contain as an induced subgraph a theta nor a wheel, using clique cutsets and 2-joins. In this talk we show how this decomposition theorem can be used to solve the induced disjoint paths and related problems on this class.
Contributed Talks (Abstracts)

Duncan Adamson (Liverpool) : Multidimensional Necklaces: Enumeration, Generation, Ranking and Unranking.

Crystals are highly structured periodic structures, defined by a 3-dimensional unit cell which periodically tiles an infinite three dimensional space. This tiling allows for many functionally identical unit cells, most obviously those that are the same up to translation. To explore the space of possible unit cells within a discrete unit space it is necessary to capture these symmetries. In one dimension, these symmetries can be easily captured by representing the unit cell as a necklace, which is the lexicographically minimal representation of a cyclic string. Motivated by the applications on crystals, we study the generalisation of necklaces to higher dimensions. This talk will focus on the generalisation of several key results on one-dimensional necklaces to the multi-dimensional case. These are the classical problem of enumeration, algorithms for the efficient generation of all necklaces, and polynomial-time algorithms for the two inverse operations of ranking and unranking of necklaces.

Ahmed Bhayat (Manchester) : Recent Developments in Higher-Order Theorem Proving

Higher-order logic is the natural language for many areas of mathematics. As such, it would be useful to have strong automation for higher-order reasoning. Unfortunately, automation for higher-order logic has lagged behind that for first-order logic. The Vampire theorem prover, developed in Manchester, along with other leading first-order theorem provers are based on the superposition calculus. Superposition is essentially a brute force search through the set of all conclusions from given axioms. However, it adds powerful simplification techniques that allow the deletion of redundant conclusion thus keeping the search space manageable. For many years it was an open question whether superposition could be extended to higher-order logic. In this presentation, I provide details on recent research extending superposition to higher-order logic. This has been done in two ways, one of which has been implemented in Vampire.

Alex V Berka (Isynchronise) : The alpha-ram family - bit level models for parallelism and concurrency

There are no primitive, bit-level models for parallelism and concurrency, amongst the formal models of computation, that permit computer simulations in tractable amounts of time and space, for the investigation of not just trivial programming constructs, but also more complex high level programs. Such a model would provide a basis for investigating parallelism, without introducing conceptual biases from the particulars of higher level models. The Alpha-Ram family of models provide not only a neutral machine platform for programming language design, but also a methodology for the design of specialised and more general purpose machine architectures. Physical constraints can be incrementally introduced into the design.
process in a least restrictive order, thereby reducing bias towards pre-conceived architectural types.

Adam Ó Conghaile (Cambridge) : Game comonads and generalised quantifiers

Game comonads, introduced for the pebble game by Abramsky, Dawar and Wang (LiCS 2017), and expanded to EF and bisimulation games by Abramsky and Shah (CSL 2018), offer a compositional perspective on the vast landscape of Spoiler-Duplicator games used in finite model theory and descriptive complexity. These constructions exhibit surprising connections between games and elegantly link the games in question with well-known algorithms for constraint satisfaction and graph isomorphism, and related combinatorial parameters such as tree-width. In my talk, I will review this new direction in finite model theory and sketch some upcoming work by me and Anuj Dawar on a new family of game comonads which extends these surprising connections to logics with generalised quantifiers, formally linking work of Hella (1990) and Hairgora & Luosto (2014) and introducing a new family of generalised tree-width parameters.

Frances Cooper (Glasgow) : Algorithms for new types of fair stable matchings

We study the problem of finding “fair” stable matchings in the Stable Marriage problem with Incomplete Lists (SMI). For an instance I of SMI there may be many stable matchings, providing significantly different outcomes for the sets of men and women. We introduce two new notions of fairness in SMI. Firstly, a regret-equal stable matching minimises the difference in ranks of a worst-off man and a worst-off woman, among all stable matchings. Secondly, a min-regret sum stable matching minimises the sum of ranks of a worst-off man and a worst-off woman, among all stable matchings. We present two new efficient algorithms to find stable matchings of these types. Additionally, we discuss experiments that compare several types of fair optimal stable matchings and show that our algorithm to find a regret-equal stable matching produces matchings is competitive with respect to other fairness objectives.

Brian Courtehoute (York) : Computing Minimum Spanning Trees with Rule-Based Graph Programs

GP 2 is an experimental graph programming language based on transformation rules. The motivation for using GP 2 is its simple syntax and semantics which facilitates formal reasoning on programs. In this talk, we will present rule-based algorithms for computing minimum spanning trees and reason about their correctness and complexity.
Tonicha Crook (Swansea) : The degree of non-computability of Nash equilibria in multiplayer games

Is there an algorithm that takes a game in normal form as input, and outputs a Nash equilibrium? If the payoffs are integers, the answer is yes, and a lot of work has been done in its computational complexity. If the payoffs are permitted to be real numbers, the answer is no, for continuity reasons. It is worthwhile to investigate the precise degree of non-computability (the Weihrauch degree), since knowing the degree entails what other approaches are available (e.g., is there a randomized algorithm with positive success change?). The two player case has already been fully classified, but the multiplayer case remains open and is addressed here. Our approach involves classifying the degree of finding roots of polynomials, and lifting this to systems of polynomial inequalities via cylindrical algebraic decomposition. This is joint work with Arno Pauly.

Matthew England (Coventry) : Machine Learning to Steer Symbolic Computation from its Worst Case Complexity

Machine Learning (ML) refers to algorithms that use statistical techniques to give computers the ability to learn from data. ML has been successfully applied in a wide variety of domains over the last decade. Our hypothesis is that ML could be used to improve the implementation of symbolic computation algorithms: to steer them away from their worst case complexity results. We report the results of EPSRC Project EP/R019622/1 which has considered the problem of selecting the variable ordering for a cylindrical algebraic decomposition (CAD). CAD is a key algorithm in real algebraic geometry and computational logic, used e.g. for quantifier elimination. We have experimented with different ML models, implemented techniques for feature generation from polynomial sets, proposed an improved measure of accuracy for such problems and used this to improve cross-validation hyper-parameter selection. These results have been published in the conferences CICM 2019, SC-Square 2019 and MACIS 2019.

Arved Friedemann (Swansea) : Functional Solving Engines

Solving engines like Satisfiability (SAT), SAT Modulo Theories (SMT) or First Order Logic (FOL) Solver have been developed with huge impact on applied verification and automated theorem proving. The next step is to verify the solving systems themselves to make them more trustable. In order to use interactive theorem provers like AGDA for their verification, there needs to be a functional representation of a Solving System that also models some of the improvements needed for a quick solving procedure. Such representations will be investigated, as well as the chance of using an inherently recursive logic as an input language to a solving system, to get a system that spans over all existing input languages. What would happen e.g. if any language were just enhanced by a solving function or predicate for itself? Existing solutions like the Haskell Constraint Programming (CP) framework will be investigated and possible future solutions to complexity problems are presented.
Andrej Ivaskovic (Cambridge) : Graded monads in program analysis

Functions with side-effects (e.g., mutable state, exceptions) introduce difficulties in reasoning about program semantics. Functional programmers are well acquainted with representing effectful computation as pure code that uses monads. Wadler and Thiemann have shown that there is a correspondence between monads and effect systems, a kind of static analysis used for computational effects. More recent research has looked into applications of the more general concept of graded monads. In this talk I will introduce graded monads and focus on how they are convenient for representing different kinds of static analysis. A part of this talk will be based on my recent work with Alan Mycroft and Dominic Orchard.

Tom de Jong (Birmingham) : Constructive domain theory in Univalent Foundations

Voevodsky’s Univalent Foundations (UF), otherwise known as Homotopy Type Theory, is a modern foundation for mathematics, based on Martin-Löf Type Theory. By default, it is a constructive system and without adding resizing axioms, it is predicative. In this talk we will explain how to develop basic domain theory constructively and predicatively in UF. In particular, we will show how to define the Scott model of the programming language PCF and prove fundamental properties such as soundness and computational adequacy. We will highlight (1) our constructive treatment, (2) important features of UF and (3) predicativity concerns. To illustrate (1): we use the Escardo\'o-Knapp lifting monad to constructively account for the non-termination in PCF. A prime example of (2) in our development is the propositional truncation. If time permits, we will report on ongoing work, such as our treatment of continuous and algebraic domains.

Noleen Köhler (Leeds) : Property Testing of NP-hard Problems

Property testers are probabilistic algorithms that aim for constant running time while providing accuracy guarantees and hence are highly relevant for solving hard problems for very large instances approximately as encountered in big-data applications. In this talk we consider the bounded-degree model of property testing. While there are NP-hard problems that are known to have no constant query complexity testers (3-Sat, 3-colourability) there is a class of NP-hard problems, for which constant query complexity property testers exist. This follows from a result of Newman and Sohler in 2013, which implies that on bounded-degree planar graphs all problems are testable of which several are NP-hard (e.g. Hamiltonicity). We recently discovered that for Hamiltonicity and dominating set there is no constant query complexity tester, using the property testing equivalent of polynomial reductions, namely local reductions. In general, however it is not clear, how NP-hardness relates to property testing in the bounded-degree model.
Oliver Kullmann (Swansea) : Classifying all minimally unsatisfiable 2-CNFs up to isomorphism

The SAT problem for 2-CNFs is a well-known special case where an NP-complete problem can be solved in linear time. We are interested in minimally unsatisfiable 2-CNFs (2-MUs), and we present a complete classification up to isomorphism (renaming of variables, and flipping of literals) of all 2-MUs. The bulk of the work is in establishing a link to weak double cycles (WDCs) as a nice class of digraphs: the implication digraphs of 2-MUs in the main cases are WDCs, and WDCs have exactly one skew-symmetry (which transforms a digraph into a 2-CNF) for those implication digraphs. Thus, the isomorphism problem for 2-MUs reduces to the isomorphism problem of WDCs, which are essentially one big cycle of small cycles, and thus their isomorphisms are understood via the symmetries of the cycle (the Dihedral group).

Edwin Lock (Oxford) : Translating into and from the Product-Mix Auction bidding language

In the Product-Mix Auction proposed by Paul Klemperer, bidders express their strong substitutes buying preferences using a novel bidding language by submitting a list of positive and negative ‘dot bids’. While it has been shown that every strong substitutes buying preferences can be uniquely expressed using positive and negative bids, there exists no mechanism in the literature that assists the bidders in compiling their bid lists. Assuming access to a demand correspondence oracle, we provide an algorithm that computes the unique list of bids corresponding to a bidder’s buying preferences. In the special case where buying preferences can be expressed using positive bids only, we have an efficient algorithm that learns the bids in linear time. We also show super-polynomial lower bounds on the query complexity of computing the unique list of bids in the general case where bids may be positive and negative.

Diptapriyo Majumdar (Royal Holloway) : Parameterized Pre-coloring Extension and List Coloring Problems

Graph Coloring is a well studied NP-Complete problem in Theoretical Computer Science. In this talk, we will discuss parameterized complexity approaches to Pre-coloring Extension and List Coloring problems. Golovach, Paulusma, and Song (Inf. Comput. 2014) asked to determine the parameterized complexity of the following problems parameterized by \(k \): (1) Given a graph \(G \), a clique modulator \(D \) (a clique modulator is a set of vertices whose removal results in a clique) of size at most \(k \) for \(G \), and a list \(L(v) \) of colors for every vertex \(v \) of \(G \), decide whether \(G \) has a proper list colouring; (2) Given a graph \(G \), a clique modulator \(D \) of size \(k \) for \(G \), and a pre-coloring \(\lambda_P : X \to Q \) for \(X \subseteq V(G) \), decide whether \(\lambda_P \) can be extended to a proper coloring of \(G \) using colors from \(Q \). For Problem 1, we design an \(O^*(2^k) \)-time randomized algorithm, and for Problem 2, we obtain a kernel with at most \(3k \) vertices. Banik et al. (IWOCA 2019) proved the following problem is fixed-parameter tractable and asked whether it admits a polynomial kernel: Given a graph \(G \), an integer \(k \), and a list \(L(v) \) of exactly \((n-k) \) colors
for every vertex \(v \) of \(G \), decide whether there is a proper list coloring for \(G \). We obtain a kernel with \(O(k^2) \) vertices and colors and a compression to a variation of this problem with \(O(k) \) vertices and \(O(k^2) \) colors. This talk is based on a joint work with Gregory Gutin, Sebastian Ordyniak, and Magnus Wahlstrom.

Francisco J. Marmolejo-Cossío (Oxford) : Fairness and Efficiency in DAG-based Cryptocurrencies

Bitcoin is a decentralised digital currency that serves as an alternative to existing transaction systems based on an external central authority for security. Although Bitcoin has many desirable properties, one of its fundamental shortcomings is its inability to process transactions at high rates. To address this challenge, many subsequent protocols either modify the rules of block acceptance and reward, or alter the graphical structure of the public ledger to a directed acyclic graph (DAG). We introduce a general framework for ledger growth in a large class of DAG-based implementations. By assuming honest miner behaviour, we explore how different DAG-based protocols perform in terms of fairness (whether the block reward of a miner is proportional to their hash power) as well as efficiency (what proportion of transactions a ledger validates after over time). Our results demonstrate fundamental structural limits on how well DAG-based ledger protocols cope with a high transaction load.

Michael McKay (Glasgow) : Stable Roommates with triple rooms under B- and W-preferences

In this talk we consider two possible formalisations of the three-dimensional Stable Roommates problem (3D-SR). In both, players specify preference lists over their peers, and the task is to partition the players into sets of size 3 based on their preferences. We consider two methods of generalising preference lists over individuals into preferences over sets. The first (second) method, B-preferences (W-preferences) is based on the ‘best’ (‘worst’) player in a set. The decision problem in each case asks whether we can partition the players into sets of three, such that no three players would prefer to be in a set together than remain in their current triples. We name the corresponding two problems 3D-SR-B and 3D-SR-W respectively, and we show that each problem is NP-complete. This contrasts with the known polynomial-time solvability of the problems (known as Hedonic Games) if we allow coalition sets of any size.

Peter Mosses (Swansea) : Towards semantics online

At BCTCS 2006, I suggested the creation of an online repository of semantic definitions. The main idea was to define individual abstract constructs independently, and to specify programming languages by translation to combinations of abstract constructs. Since 2011, the PLanCompS project [1] has been developing a component-based framework for semantics. A beta-release of a semantics repository is available [2], together with Haskell-based tools [3] for executing abstract constructs (and hence programs via translation). Cliff
Jones has also developed a digital library of historical semantic descriptions [4]. In this talk, I will present the foundations of component-based semantics, and look at how far the PLanCompS project has come towards establishing semantics online.

Arno Pauly (Swansea) : From finite memory determinacy to Nash equilibria

Two-player win/lose games played on finite graphs are a central tool for verification. A common question is whether a winning strategy can be implemented by a finite automaton. As we consider quantitative objections and heterogeneous systems, we would want to consider multiplayer multi-objective games, and now have Nash equilibria realized by finite automata. I will present some transfer results that show under what conditions finite memory determinacy of the two-player win/lose case yields finite memory Nash equilibria of the multiplayer multi-outcome case. This is joint work with Stephane Le Roux, and based on the article https://doi.org/10.1016/j.ic.2018.02.024

Olga Petrovska (Swansea) : Intuitionistic Fixed Point Logic and Program Extraction

In this talk I will present Intuitionistic Fixed Point logic (IFP) and its extensions that lie in the foundation of a new approach to program extraction. After discussing some examples, I will outline the main challenges of the soundness proof, which come from the optimisations required to include a fair amount of classical logic and to obtain garbage-free programs.

William Pettersson (Glasgow) : Preprocessing theory and practice in stable matching problems

Stable matching problems arise when agents with preferences must be matched in pairs, while avoiding having any pair of agents not currently matched together but who would prefer to be matched together to their current partners. Where agents can have incomplete preferences, with ties, finding a largest stable matching is NP hard, but such matchings are required in real-world applications. Preprocessing is the removal of entries from preferences of agents that don't affect any stable matching, which in turn reduces the time required to find largest stable matchings. We present new theory that allows the removal of more such entries, and then extend our new work to more general settings where agents may have
integral capacities. We also present new algorithms that take advantage of this new theory, and perform computational experiments that show considerable improvements.

Tobias Rosenberger (Swansea) : Unbabel your tools: Leveraging SPASS for UML

We present our progress towards fully automated symbolic reasoning about UML state machines. We do this in the context of institution theory and the Heterogeneous Framework (Hets), which allow the principled reuse of results and tools between different logics. In particular, we integrate a language for simple UML state machines into Hets and show how Hets can be used to apply the automated theorem prover SPASS to state machine properties. This is part of a larger effort to provide institution based tool-support and integrated semantics for UML diagrams.

Anton Setzer (Swansea) : Did Erik Palmgren Solve a Revised Hilbert's Program?

This talk is dedicated to the memory of Erik Palmgren (1963 - 2019) We revisit the article by Palmgren giving an embedding of iterated inductive definitions into Martin-Löf Type Theory, and explain in what sense it provides an early substantial solution to a revised Hilbert's program. Palmgren's result didn't provide a sharp lower body. We present a restricted version of Martin-Löf Type Theory with W-type and one universe, for which the embedding of Palmgren works as well and for which Palmgren's lower bound is sharp. We give a proof sketch for the sharpness of this bound.

Pavel Vesely (Warwick) : Tight Lower Bound for Comparison-Based Quantile Summaries

Quantiles, such as the median or percentiles, provide concise and useful information about the distribution of a collection of items, drawn from a totally ordered universe. We study data structures, called quantile summaries, which keep track of all quantiles, up to an error of at most \(\varepsilon \). That is, an \(\varepsilon \)-approximate quantile summary first processes a stream of items and then, given any quantile query \(0 \leq \phi \leq 1 \), returns an item from the stream, which is a \(\phi' \)-quantile for some \(\phi' = \phi \pm \varepsilon \). We focus on comparison-based quantile summaries that can only compare two items and are otherwise completely oblivious of the universe. The best such deterministic quantile summary to date, due to Greenwald and Khanna (SIGMOD '01), stores at most \(\Theta((1\varepsilon \cdot \log N) \varepsilon N) \) items, where \(N \) is the number of items in the stream. We prove that this space bound is optimal by showing a matching lower bound.
Aled Walters (Swansea) : Model-Based Testing of ETCS RBCs

The European Train Control System (ETCS) is a state-of-the-art railway control system, based on the communication between trains and interlockings via a Radio Block Centre (RBC). We are investigating the use of model-based testing in performing the quality control of RBC implementations in development. Using a formal model of ETCS based on a real-world implementation of a RBC, we can establish whether the comparison of a proven safety-verified model can in turn offer the same assurances to the real-world implementation under test, or whether issues in the implementation can be detected before heavy testing. The required elements necessary for an abstracted yet sufficiently accurate model are key, and further models could be improved with additional details, or by using alternative modelling tools, while we aim to examine the advantages of using a formal proof alongside testing. In this talk we will discuss an instantiation of an ETCS model in Real-Time Maude based on data from industry implementation, and a comparison between its outcomes and that of industrial simulations. There will also be a brief look at possible tools to be implemented for the modelling, and an outlook for the project going forward. The research is done in collaboration with our Industry partner Siemens Rail Automation. The talk is based on joint work with Markus Roggenbach and Monika Seisenberger, Swansea University.

Daniel Ward-Williams : Exploring search characteristics of numeral system encodings

While we know numeral systems such as decimal and binary very well, there is a plethora of alternative ways to encode numbers. We look at some unusual systems and see what they have to offer as search space encodings. Characteristics such as range of value representability and unusual arithmetic laws are reviewed. Results from use in genetic algorithm encoding are discussed.
Lunch options

On Campus (see Campus map)

The Core (09:00 - 14:30 Monday - Friday)
Muchos Burritos offer customisable burritos with a choice of chicken, pork, vegetarian or a guest filling.
Fusion serves a taste of international cuisine with a Wok and Curry of the Day.
Cegin is where you will find British daily specials.

Coffeeopolis (08:30 – 17:00 Monday – Friday)
Located in the courtyard of Engineering Central towards the eastern edge of the campus serving Starbucks coffee and a selection of freshly prepared panini.

COSTA™ at The College (08:30 – 17:00 Monday - Friday)
Located at the very back of The College building. It offers sweet treats, sandwiches and salads.

Tafarn Tawe (10:00 - 16:00 Monday - Friday)
The Bay Campus Students Union pub, serving fresh food all day, from breakfast sandwiches to burgers and salads!

Tesco Express
Tesco Express offers various ready meals as well as meal deals, that is a main (such as a sandwich or pasta salad), drink and snack for a set price of £3.00.

Off Campus

Café UP (10:00 - 15:30 Monday – Friday)
Located across from the Campus in the Bay Studios building offering a selection of freshly prepared Japanese meals, sandwiches, toasties and wraps.
Swansea city: where to eat (dinner)

Swansea city centre offers several restaurants and cafes. Here are some options that you might consider:

Ask Italian (Italian, Mediterranean): 6 Wind Street, Swansea, SA1 1DF
https://www.askitalian.co.uk/
££

Gallini’s (Italian): Unit 3, Fishmarket Quay, Maritime Quarter, SA1 1UP
http://www.gallinisrestaurant.co.uk/
££-£££

Madeira (Portuguese): 46 Kingsway, Swansea, SA1 5HG
https://www.madeirarestaurantswansea.co.uk/
££-£££

Las Iguanas (Mexican, Brazilian, Latin American): 1-4 Castle Square, Swansea, SA1 1DN
https://www.iguanas.co.uk/
£

Awa Grill House (Middle Eastern): 8-10 College Street, Swansea, SA1 5AE
£-££

Turkish Kitchen (Turkish): 21 High St, Swansea SA1 1LF
https://www.swanseaturkishkitchen.com/
£-££

Panshee (Indian): 29 Singleton St, Swansea SA1 3QN
https://www.pansheeswansea.co.uk/
£-££

Nishimura (Japanese): 83 Brynymor Road, Swansea, SA1 4JE
https://nishimura.co.uk
£

Acropolis (Greek): 82 The Kingsway, Swansea, SA1 5JH
https://thegreekacropolis.com/
£-££

See map on the next page