Did Erik Palmgren Solve a Revised Hilbert’s Program?

Anton Setzer

Dept. of Computer Science, Swansea University, UK

BCTCS 2020, 8 April 2020

In Living Memory of Erik Palmgren
Erik Palmgren, 1963 - 2019

1

1Source:
Introduction to Martin-Löf Type Theory

Interpretation of Iterated Inductive Definitions
Introduction to Martin-Löf Type Theory

Interpretation of Iterated Inductive Definitions
Introduction to Martin-Löf Type Theory

Martin-Löf Type Theory

- **Martin-Löf Type Theory** (MLTT) is a type theory for formalising constructive mathematics.
- It is designed in such a way that one has – as far as possible – a direct insight into the validity of its judgements.
 - As a response to the failure of the original Hilbert’s program due to Gödel’s 2nd Incompleteness Theorem.
- MLTT is as well the basis for the theoretical basis for the interactive theorem prover and dependently typed programming language *Agda.*
Dependent Type Theory

- Simple Type Theory has non dependent types, the main ones being
 \[A \times B \quad A \rightarrow B \]

- Dependent Type Theory allows types to dependent on elements of other types.

- One of the origins is the interpretation of the \(\forall \)-quantifier.
 - In BHK interpretation of logical connectives, a
 proof of \(\forall x : A. B \; x \)
 - is a **function** that
 - maps an element \(x : A \) to a proof of \(B \; x \).
 - So proofs are elements of type \(\Pi A \; B \).
 - \(\Pi A \; B \) = type of dependent functions, which map
 \(x : A \) to an element of \(B \; x \).

- **Remark:** \(\text{Set} \) in MLTT is what is usually called “Type”.
Π-Type

- **Formation rule:**

\[
\begin{array}{c}
A : \text{Set} \\
B : A \to \text{Set}
\end{array}
\quad \quad \quad
\begin{array}{c}
\Pi A B : \text{Set}
\end{array}
\]

- **Introduction rule:**

\[
x : A \Rightarrow t : B x \\
\lambda x.t : \Pi A B
\]

- **Elimination rule:**

\[
f : \Pi A B \\
a : A
\quad \quad \quad
\begin{array}{c}
\text{Ap} f a : B a
\end{array}
\]

- **Equality rule:**

\[
x : A \Rightarrow t : B x \\
a : A
\quad \quad \quad
\begin{array}{c}
\text{Ap} (\lambda x.t) a = t[x := a] : B a
\end{array}
\]
W-Type

Assume $A : \text{Set}, \ B : A \to \text{Set}$.

$W_{A,B}$ is the type of well-founded recursive trees with branching degrees $(B \ a)_{a : A}$.

If $B \ a''$ empty we get a leaf $f' \ z = \sup_{a''} f''$

$$
\begin{align*}
& f' \ z' \\
& z' \\
& z : B \ a'
\end{align*}
$$

$$
\begin{align*}
& f \ y' \\
& y' \\
& y : B \ a
\end{align*}
$$

$$
\begin{align*}
& \sup_{a} f \\
& (a : A, f : B \ a \to W_{A,B})
\end{align*}
$$
Kleene’s O

Example Kleene’s O, tree of height ω, Version in MLTT.

$$\text{KleeneO}_{\text{ML}} := W \ A \ B,$$

where $A = \{\hat{\emptyset}, \hat{*}, \hat{\mathbb{N}}\}$

$B \hat{\emptyset} = \emptyset \quad B \hat{*} = \{\ast\} \quad B \hat{\mathbb{N}} = \mathbb{N}.$
Example Kleene O₂:

\[
\text{KleeneO}_{ML,2} := W \ A' \ B' \text{ where }
\]

\[
\begin{align*}
A' &= \{\hat{\emptyset}, \hat{*}, \hat{\mathbb{N}}, \text{KleeneO}\} \\
B' : A' &\to \text{Set} \\
B' \hat{\emptyset} &= \emptyset \\
B' \hat{*} &= \{*\} \\
B' \hat{\mathbb{N}} &= \mathbb{N} \\
B' \hat{\text{KleeneO}} &= \text{KleeneO}_{ML}
\end{align*}
\]

Therefore it’s a \textit{nested W-type}.

We can define \(\omega^\text{ck}_1 : \text{KleeneO}_{ML,2}\),

\[
\omega^\text{ck}_1 := \sup \text{KleeneO embed}
\]

\(\text{embed} : \text{KleeneO}_{ML} \to \text{KleeneO}_{ML,2}\) embedding function.

\(\omega^\text{ck}_1\) has height the supremum of the heights of all elements in \(\text{KleeneO}_{ML}\).
The \(W \)-Type

- **Formation rule:**
 \[
 \begin{align*}
 A : \text{Set} & \quad B : A \to \text{Set} \\
 \hline
 W A B : \text{Set}
 \end{align*}
 \]

- **Introduction rule:**
 \[
 \begin{align*}
 a : A & \quad b : B \to W A B \\
 \hline
 \sup a b : W A B
 \end{align*}
 \]

- **Elimination and Equality Rules:** Induction over trees.
Universes

- A universe is a family of sets
- Given by
 - an set $U : \text{Set}$ of \textit{codes} for sets,
 - a \textit{decoding function} $T : U \to \text{Set}$.
- **Formation rules:**
 $$U : \text{Set} \quad T : U \to \text{Set}$$
- **Introduction and Equality rules:**
 $$\hat{N} : U \quad T \hat{N} = N$$

 $$a : U \quad b : T a \to U$$
 $$\hat{\Pi} a b : U$$
 (compare with $A : \text{Set} \quad b : A \to \text{Set}$)

 $$T(\hat{\Pi} a b) = \Pi (T a)(T \circ b)$$

 Similarly for other type formers (except for U).
Introduction to Martin-Löf Type Theory

Interpretation of Iterated Inductive Definitions
ID^i is the theory of intuitionistic inductive definitions given by

- The language and theory HA of Heyting Arithmetic,
- for formulas \(\mathcal{A}(X, y) \) strictly positive in \(X \)
 - a predicate \(I_{\mathcal{A}} \) (written \(n \in I_{\mathcal{A}} \))
 - axioms expressing that \(I_{\mathcal{A}} \) is the least set closed under \(\mathcal{A} \):

\[
\forall n. \mathcal{A}(I_{\mathcal{A}}, n) \rightarrow n \in I_{\mathcal{A}}
\]

\[
\forall n \in I_{\mathcal{A}}. \mathcal{A}(B, n) \rightarrow B(n)
\]

\[
\forall n \in I_{\mathcal{A}}. B(n)
\]

where \(B(x) \) is any formula with distinguished variable \(x \), which might make use of \(I_{\mathcal{A}} \).
Example: Inductive Definition of Kleene’s O

- **KleeneO** (Kleene’s O as a set of natural numbers) can be defined **inductively** by
 - $\langle 0, 0 \rangle \in \text{KleeneO}.$
 - If $e \in \text{KleeneO}$ then $\langle 1, e \rangle \in \text{KleeneO}$
 - If $\forall n \in \mathbb{N}. \{e\}(n) \in \text{KleeneO},$ then $\langle 2, e \rangle \in \text{KleeneO}.$

- Definable in ID^i using
 $$A(X, n) :=$$
 $$(n = \langle 0, 0 \rangle$$
 $$\lor (\exists m. n = \langle 1, m \rangle \land m \in X)$$
 $$\lor (\exists e. n = \langle 1, e \rangle \land \forall m. \exists k. \{e\}(m) \approx k \land k \in X))$$

- So the above definition is equivalent to the **inductive definition**

 if $A(\text{KleeneO}, n)$ then $n \in \text{KleeneO}$
Kleene’s O as subset of \mathbb{N}
IDi is the smallest (in a proof theoretic sense) fully impredicative theory studied in proof theory.2

It’s strength is the Bachmann Howard Ordinal, in modern notation (e.g. [5])

$$\psi_{\Omega_1}(\epsilon_{\Omega_1+1})$$

Iterated inductive definitions were the topic of the famous monograph “BuFePoSi” [2].

2There is another notion of predicativity which gives limit Γ_0. Jäger calls theories between Γ_0 and IDi “meta-predicative”.
Theory of Finitely Iterated Intuitionistic Inductive Definitions

- ID_n^i is the theory of n times iterated inductive definition.
- Allows predicates $I_{A,k}$ for $k < n$
 where $I_{A,k}$ can refer to $I_{A',k'}$ for $k' < k$ (positively and negatively).
 - KleeneO_2 can be defined in ID_2^i as one inductive definition which
 refers to KleeneO.
 - Can be generalised to KleeneO_n, definable in ID_n^i.
- $\text{ID}_n^i = \psi_{\Omega_1}(\epsilon_{\Omega_{n+1}})$ (e.g. [5]).
- $\text{ID}_{<\omega}^i$ is the union of ID_n^i and has strength $\psi_{\Omega_1}(\Omega_\omega) = |(\Pi^1_1 - \text{CA})_0|$.
We define the theory \mathbf{ID}_α^i of transfinitely iterated intuitionistic inductive definitions:

Fix an ordinal notation system (\mathcal{O}_T, \prec) of order type α, i.e.

- $\mathcal{O}_T \subseteq \mathbb{N}$ primitive recursive,
- \prec primitive recursive binary relation on \mathcal{O}_T,
- (\mathcal{O}_T, \prec) well founded of order type α.
- β, γ, \ldots refer to elements of \mathcal{O}_T.

Language of \mathbf{ID}_α^i is given by

- for any predicate $\mathcal{A}(X, Y, \beta, n)$ strictly positive in X
 - a binary predicate symbol $n \in \mathbf{I}_{\mathcal{A}, \beta}$
 - a defined predicate

$$\mathbf{I}_{\mathcal{A}, \prec \beta} := \bigcup_{\gamma \prec \beta} \{\gamma\} \times \mathbf{I}_{\mathcal{A}, \gamma}$$
Theory of transfinitely iterated intuitionistic inductive definitions

▶ Axioms

\[
\begin{align*}
\beta \in \text{OT} & \quad \mathcal{A}(\mathcal{I}_A, \beta, \mathcal{I}_A, \prec \beta, \beta, n) \\
\Rightarrow & \quad n \in \mathcal{I}_A, \beta
\end{align*}
\]

\[
\begin{align*}
\beta \in \text{OT} & \quad \forall n \in \mathcal{I}_A, \beta. \mathcal{A}(B, \mathcal{I}_A, \prec \beta, \beta, n) \rightarrow B(n) \\
\Rightarrow & \quad \forall n \in \mathcal{I}_A, \beta. B(n)
\end{align*}
\]

▶ Transfinite induction over OT.

▶ $\text{ID}^i_{\prec \alpha}$ is the union of the theories ID^i_{β} for $\beta < \alpha$.
Eric Palmgren was able to interpret $\text{ID}^i_{<\epsilon_0}$ in

$$\text{ML}_1^W := \text{MLTT} + W + U$$

This showed that the proof theoretic strength of the type theory in question is

$$|\text{ML}_1^W| \geq |\text{ID}^i_{<\epsilon_0}| = |\Delta^1_2 - \text{CA}| = \psi_{\Omega_1}(\Omega_{\epsilon_0})$$

In our PhD thesis [6, 7] we showed that the strength is much bigger

$$|\text{ML}_1^W| = \psi_{\Omega_1}(\Omega_{I+\omega})$$

The proof required advanced well-ordering techniques due to Buchholz and Pohlers.\(^3\)

\(^3\)Jäger might have been involved as well - I haven't investigated that yet. Our approach was based on the refined version by Buchholz, in draft version [1], see as well the book by Buchholz and Schütte [3]
Palmgren’s Results as a Solution to a revised Hilbert’s Program

- By Palmgren’s result, the strength of MLTT with W-type and one universe is $> |(\Pi_1^1 - CA)_0|$, which is the biggest of the big 5 systems in reverse mathematics [9].
- $(\Pi_1^1 - CA)_0$ allows to prove therefore most “real” mathematical theories.
- $ML_1 W$ proves its consistency.
- $ML_1 W$ was designed to be a trustworthy theory (meaning explanations). ⁴
- If one trusts in this type theory, one can trust in the correctness of those proofs.
- Therefore Palmgren’s result gives a first quite strong solution to a revised Hilbert’s program.

⁴Trustworthiness is subject to a philosophical debate
When revisiting Palmgren’s proof one sees that he didn’t use the full power of \(ML_{1W} \).
- We can restrict \(W \)-types to elements of the universe.
 So we define \((W \ a \ b) \) only for \(a : U \) and \(b : T \ a \to U \).
- We can restrict induction over \(W \)-types to elements of the universe.
- Let the resulting theory be called \(ML_{1W^-} \).

Subject to working out the full details of the proof we obtain the following result [8]:
- The interpretation of \(ID_{<\epsilon_0}^i \) by Palmgren can be carried out as well in \(ML_{1W^-} \).
- \(ML_{1W^-} \) can be interpreted in \(ID_{<\epsilon_0}^i \)
- Therefore \(|ML_{1W^-}| = |ID_{<\epsilon_0}^i| = \psi_{\Omega_1}(\Omega_{\epsilon_0}) \).
Palmgren showed that $\text{ID}^i_{<\epsilon_0}$ can be interpreted in $\text{ML}_1 W$.

Therefore $\text{ML}_1 W$ shows the consistency of $(\Pi^1_1 - \text{CA})_0$ sufficient to carry out most real mathematical proofs.

Therefore Palmgren’s result gives an answer to a revised Hilbert’s program.

The result can be sharpened to determine the precise strength of a weaker theory $\text{ML}_1 W^-$.
Strictly positive inductive definitions give rise to a monotone operator

\[\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N}) \]

where \(\mathcal{P}(\mathbb{N}) = \mathbb{N} \to U \).

For a strictly positive inductive definition one can “collect” all the sets, \(\forall \)-quantifiers in its definition are ranging over.

Now one defines a \(W \)-type which has as branching degree all those sets.

If we iterate the operator \(\Gamma \) transfinitely over the \(W \)-type, one obtains the least fixed point of \(\Gamma \) which one can use to interpret an inductive definition.

By “Gentzen’s trick” one obtains transfinite induction up to \(< \varepsilon_0 \) over types, and can use it to get iterated inductive definitions up to \(\alpha \) for any \(\alpha < \varepsilon_0 \).
Erik Palmgren showed as well in [4] that if one replaces the W-type in type theory by finitely iterated versions of Aczel’s V used by Aczel to interpret constructive set theory CZF in type theory one obtains the strength $|\text{ID}^i_{\omega}| = \psi_{\Omega_1}(\Omega_\omega) = |(\Pi^1_1 - CA)_0|$ (as noted before)
Bibliography I

W. Buchholz.
Wellordering proofs for systems of fundamental sequences.

10.1007/BFb0091895.

W. Buchholz and K. Schütte.
Proof Theory of Impredicative Subsystems of Analysis.
E. Palmgren.
Type-theoretic interpretation of iterated, strictly positive inductive definitions.

W. Pohlers.
Chapter 4: Subsystems of set theory and second order number theory.
A. Setzer.
Proof theoretical strength of Martin-Löf Type Theory with W-type and one universe.
Available from http://www.cs.swan.ac.uk/~csetzer/articles/weor0.pdf.

A. Setzer.
Well-ordering proofs for Martin-Löf type theory.
https://doi.org/10.1016/S0168-0072(97)00078-X,
http://www.cs.swan.ac.uk/~csetzer/articles/2papdiss.pdf.
A. Setzer.
Did Palmgren solve a revised Hilbert’s program?, March 2020.

S. G. Simpson and S. S. G. Simpson.
Subsystems of second order arithmetic, volume 1.